
The Open Traceable Time Platform

User Manual

Version 2.1.0

Copyright 2016 E. Louis Marais, Michael Wouters

Generated October 14, 2023

This work is licensed under a Creative
Commons Attribution 4.0 International License.

Contents

1 Introduction 7
1.1 What is OpenTTP? . 7
1.2 The OpenTTP software suite 8

1.2.1 Supported GNSS receivers 8
1.2.2 Supported counters . 8

1.3 The OpenTTP reference platform 8
1.3.1 Licenses . 9

2 Getting started with the Reference Platform 10
2.1 The front panel . 10

2.1.1 Using the front panel keypad 11
2.1.2 Menus . 11

2.2 The rear panel . 14
2.3 Installation . 14

2.3.1 Operating environment 14
2.3.2 Install the GPS antenna and cable 14
2.3.3 Make other system connections 15

2.4 Logging in . 16
2.5 The cvgps user . 16
2.6 Checking operation . 16
2.7 Local configuration . 17
2.8 Securing the system . 17
2.9 Maintenance . 17

2.9.1 Updating the software 17
2.9.2 Replacing the SD card 17

3 The reference platform hardware 18
3.1 Antenna . 18
3.2 Multi-channel counter/timer 18

3.2.1 Counter delays . 20
3.3 Electrical specifications . 20

4 Installing the software 22

1

CONTENTS

4.1 Installation requirements . 22
4.2 Obtaining, building and installing the software 22

4.2.1 Building the documentation 23
4.2.2 Installing the software 23

4.3 A minimal software setup . 23
4.4 Common configuration problems 25

4.4.1 UUCP lock file creation 25

5 GPSCV software 26
5.1 Software overview . 26
5.2 crontab . 26
5.3 Configuration file format . 28

5.3.1 Paths . 29
5.4 Data file formats . 29

5.4.1 GPS receiver . 29
5.4.2 Time-interval counter 29

5.5 gpscv.conf - the core configuration file 30
5.5.1 [Antenna] section . 30
5.5.2 [CGGTTS] section . 32
5.5.3 [Counter] section . 37
5.5.4 [Misc] section . 39
5.5.5 [Delays] section . 39
5.5.6 [Paths] section . 39
5.5.7 [Receiver] section . 41
5.5.8 [Reference] section . 44
5.5.9 [RINEX] section . 45

5.6 mktimetx . 46
5.6.1 usage . 46
5.6.2 configuration file . 47
5.6.3 log file . 47

5.7 runmktimetx.pl . 47
5.7.1 usage . 47

5.8 mkcggtts.py . 48
5.8.1 usage . 48
5.8.2 configuration file . 48
5.8.3 examples . 49

5.9 rnx2cggtts . 49
5.9.1 usage . 49
5.9.2 configuration file . 49

5.10 cnt9xlog.py . 55
5.10.1 usage . 55
5.10.2 configuration file . 55

5.11 hp5313xlog.pl . 56
5.11.1 usage . 56

2

CONTENTS

5.11.2 configuration file . 56
5.12 ks53230log.py . 57

5.12.1 usage . 57
5.12.2 configuration file . 57

5.13 okxemlog.pl . 57
5.13.1 usage . 58

5.14 prs10log.pl . 58
5.14.1 usage . 58

5.15 ticclog.py . 59
5.15.1 usage . 59

5.16 Javad/Topcon receivers . 59
5.16.1 jnslog.pl . 59
5.16.2 jnsextract.pl . 61
5.16.3 runrinexobstc.pl . 62

5.17 NVS NV08C receivers . 63
5.17.1 nv08log.pl . 63
5.17.2 nv08extract.pl . 63
5.17.3 nv08info.pl . 64

5.18 Septentrio receivers . 65
5.18.1 plrxlog.py . 65
5.18.2 mosaicmkdev.py . 66
5.18.3 runsbf2rnx.py . 66
5.18.4 sbf2rinbatch.py . 69
5.18.5 mksephourly.py . 69
5.18.6 sbf2rnx . 69

5.19 Trimble Resolution T receivers 70
5.19.1 restlog.pl . 70
5.19.2 restextract.pl . 70
5.19.3 restinfo.pl . 71
5.19.4 restconfig.pl . 71
5.19.5 restplayer.pl . 72

5.20 ublox receivers . 72
5.20.1 ublox9log.py . 72
5.20.2 ubloxlog.pl . 72
5.20.3 ubloxextract.py . 73
5.20.4 ubloxmkdev.py . 73

5.21 Miscellaneous tools . 74
5.21.1 cggttsqc.py . 74
5.21.2 cmpcggtts.py . 75
5.21.3 editcggtts.py . 77
5.21.4 editrnxnav.py . 78
5.21.5 editrnxobs.py . 78
5.21.6 fetchigs.py . 79
5.21.7 ticqc.py . 81

3

CONTENTS

6 System software 82
6.1 dioctrl . 82
6.2 kickstart.py . 82

6.2.1 usage . 82
6.2.2 configuration file . 82

6.3 mjd . 83
6.3.1 usage . 83

6.4 okcounterd . 84
6.4.1 usage . 84

6.5 okcounterdctl.pl . 85
6.5.1 usage . 85

6.6 okbfloader . 85
6.6.1 usage . 85

6.7 lcdmonitor . 86
6.7.1 usage . 86
6.7.2 configuration file . 86

6.8 libraries . 89
6.8.1 libconfigurator . 89
6.8.2 TFLibrary.pm . 89
6.8.3 OpenOK2 . 90
6.8.4 ottplib.py . 90
6.8.5 cggttslib.py . 91

6.9 ppsd . 92
6.9.1 usage . 92
6.9.2 configuration file . 92

6.10 sysmonitor.pl . 92
6.10.1 usage . 93
6.10.2 configuration file . 93
6.10.3 log file . 94

6.11 gziplogs.py . 94
6.11.1 usage . 95
6.11.2 configuration file . 95

A Software license 96

4

List of Figures

2.1 Front panel of the unit . 10
2.2 Menu structure . 12
2.3 Rear panel of the unit . 14
2.4 Directories in the cvgps account 16

3.1 Selection of antenna voltage using JP1 19
3.2 The OpenTTP multi-channel counter. 20

4.1 Overview of the OpenTTP software source 24

5

List of Tables

1.1 Supported GPS/GNSS receivers. 8
1.2 Supported counters. 9

2.1 Rear panel electrical connections 15
2.2 Checking NTP operation . 17

3.1 Status LEDs on Opal Kelly XEM6001 board 21
3.2 XEM6001 counter delays . 21
3.3 Electrical signals and their characteristics 21

5.1 GPSCV software overview 27
5.2 Summary of gpscv.conf entries 30
5.3 Correspondence of CGGTTS and RINEX signal names. . . . 36
5.4 Summary of gpscv.conf entries used by mktimetx. Optional

entries are italicised. 47

6.1 PPS OUT channels for the -p option 85

6

1. Introduction

This chapter gives a short introduction to the Open Traceable Time Plat-
form (OpenTTP), describing the Reference Platform and other supported
hardware.

1.1 What is OpenTTP?

The Open Traceable Time Platform is an open-source solution for a timing
system that can be made fully traceable to national standards. It achieves
traceability using the GPS common-view technique, which allows distant
clocks to be compared with an accuracy of a few ns. The reference platform
is based on readily available, low-cost OEM modules and provides a full
software and hardware solution.

The goals of the OpenTTP project are:

1. Fully open source hardware and software 1

2. Easy customisation for specialised applications

3. Production of time-transfer files in the standard CGGTTS data format
(currently for GPS only)

4. Easy extension to new receivers

5. Low cost

6. Provision of a convenient framework for research and development.

Applications currently include provision of traceable time of day and audit-
ing of NTP-synchronized systems.

1The Reference Platform uses some black-box software modules supplied by the FPGA
vendor which cannot be freely distributed.

7

1. Introduction

1.2 The OpenTTP software suite

The OpenTTP software suite provides a full solution for automated logging
and processing of time-transfer data. It is available via GitHub:

https://github.com/openttp

Users are invited to contribute to its development.

The software supports a number of GNSS receivers and counters. The sup-
ported GNSS receivers are mostly low-cost, single-frequency receivers since
low cost is a key objective of the OpenTTP project. Low-cost dual fre-
quency receivers have recently become available and one of these, the ublox
ZED-F9, is now supported by OpenTTP.

1.2.1 Supported GNSS receivers

OpenTTP currently supports the receivers listed in table 1.1.

Manufacturer models notes

Javad GRIL receivers obsolete
NVS NV08
Septentrio PolaRx family
Trimble Resolution T obsolete
ublox NEO-M8T,ZED-F9P,ZED-F9T may work with earlier receivers

Table 1.1: Supported GPS/GNSS receivers.

OpenTTP uses a custom file format for logging GPS receiver data. It does
not read native receiver binary-format files.

Guidance on testing a receiver for suitability for time-transfer, and writing
software to process the receiver’s data, is given in the OpenTTP Developer’s
Guide.

1.2.2 Supported counters

Counters supported by OpenTTP are listed in 1.2.

The file format used 5.4.2 is very simple and it should be easy to convert
from another format, if needed.

1.3 The OpenTTP reference platform

The OpenTTP reference platform currently consists of:

2 Raspberry Pi4, an ARM-based single board computer

8

1. Introduction

Manufacturer models notes

Agilent 5313x needs IOTech GPIB to RS232 converter
Keysight 53230A uses USB TMC
OpenTTP XEM6001 simple FPGA-based counter/timer
Pendulum CNT-9x
SRS PRS10 uses the input 1 pps time-tagging function
TAPR TICC

Table 1.2: Supported counters.

2 ublox ZED-F9T GNSS receiver

2 Opal Kelly XEM6001 FPGA development board

2 Jackson Labs LTE Lite GPS-disciplined oscillator

2 Solid-state disk for mass storage

2 CrystalFontz LCD module

The prototype version used the BeagleBone Black single board computer
and NVS NV08 receiver. Custom circuits, printed circuit board designs and
other hardware resources are all available via the GitHub repository.

1.3.1 Licenses

The software is available under the MIT license.

9

2. Getting started with the Ref-
erence Platform

This chapter describes basic setup of the OpenTTP reference platform, ver-
ification of its operation and logging in to the unit.

Warning ! The unit contains a computer. This must be shut down properly
before power is removed from the unit. Failure to do this can result in
inoperability of the system. The system can be shut down from the front
panel (2.1.1) or by logging in (2.4).

2.1 The front panel

A B C

Figure 2.1: Front panel of the unit

kA Status LEDskB LCD displaykC Keypad

The top line of the LCD display shows UTC date and time. The date and

10

2. Getting started with the Reference Platform

time displayed will typically only be accurate to 1 s. The contents of the
second and third lines of the display depend on the display mode 2.1.2.

The bottom line is reserved for notification of system alarms and either
shows ‘System OK’ or ‘System Alarm’. The adjacent LED will be red if
there is a running alarm. The other LEDs are currently unused.

2.1.1 Using the front panel keypad

The keypad provides access to status information and limited control and
configuration of the unit. It can be used to cleanly shut down or reboot the
computer without logging in.

System status is normally displayed on the screen. The menus are accessed
by pressing any key. Menus are navigated using the keypad:kä Move to next menu itemkä Move to previous menu itemkä , k4 Select menu itemkä Back to previous menuk6 Back to the status display
Escaping back to the status page after making a change will not undo the
change. Where a sub-menu lists a number of options, the currently selected
option is flagged with an asterisk.

Dialogs are navigated using the cursor keys. A dialog will typically consist
of a number of input fields. Some of these work like buttons and are selected
using the k4 key; others may require inputting a value and this is done by
cycling through the possible values with the cursor keys.

If you move out of an input field, focus will pass to the next valid input
field.

You can quit a dialog using the k6 key. Any changes made in a dialog will
not be applied if you quit it.

If a menu or dialog has been inactive for more than 5 minutes, the display
returns to showing system status.

2.1.2 Menus

The menu structure is shown below:

LCD setup

The intensity and contrast of the LCD display can be set using this menu.
A timeout can also be set on the backlight.

11

2. Getting started with the Reference Platform

Home screen

Setup

LCD setup

LCD settings

LCD backlight time

Display mode

GPS

NTP

GPSDO

Show IP addresses

Show alarms

Show system info

Restart

GPS

NTPD

Reboot

Power down

Figure 2.2: Menu structure

Display mode

The status information displayed by the unit in the second and third lines
of the LCD display can be selected as relating to either GPS, NTP or the
GPSDO.

When in GPS mode, the identifiers of up to 10 currently visible GPS space
vehicles are displayed.

When in NTP mode, the second line shows the number of NTP packets
received per minute. The third line shows information about synchronization
status, including leap second announcements.

In GPSDO mode, the second line shows whether the GPSDO is locked or not.
The third line alternates between the ‘health’ byte (??), and the estimated
fractional frequency error (reported by the GPSDO) and the electronic fre-
quency control (EFC) voltage, normalized to a maximum of 100.

Show alarms

This shows any currently running alarms as listed in /home/cvgps/logs/alarms.

Show system info

This displays version and serial number information and the make of the in-
stalled oscillator. This information is read from the file /usr/local/etc/sysinfo.conf

12

2. Getting started with the Reference Platform

which has to be manually updated if the installed oscillator is changed.

Restart

This allows the user to restart several processes (GPS common view logging
and ntpd) as well as reboot or power down the unit. You will be asked to
confirm power down or reboot.

13

2. Getting started with the Reference Platform

2.2 The rear panel

1 PPS

GPS ---- REF

TTLREF

10 MHz --- 5 MHz 1 PPS IN –-- EX IO

----USB----

DC 7.5V/5A
BB Teth

HDMI

LAN

GPS ANT

RESET

KJ

FDB

H

A C E

G L MI N

Figure 2.3: Rear panel of the unit

If connected to a computer via the USB connector kF , a network adapter
should show up on the computer. The TTP will provide your computer with
an IP address of either 192.168.7.1 or 192.168.6.1, depending on the type of
USB network adapter supported by your computer’s operating system. The
TTP will reserve 192.168.7.2 or 192.168.6.2 for itself. Further information
can be found in the BeagleBone Black documentation.

2.3 Installation

2.3.1 Operating environment

The TTP is designed for indoor use only and is neither water nor moisture-
proof. It should not be subjected to large mechanical shocks or excessive
heat and dust.

2.3.2 Install the GPS antenna and cable

The unit supplies 5 V DC to the antenna. This can be changed to 3.3 V via
a jumper J1. More details are given in 3.1.

The GNSS antenna should be installed in a location with a clear view of the
sky above 10◦. All exposed connections should be weatherproofed. Make
sure that all connections are tight but do not apply excessive torque as this
can result in connectors detaching from the cable.

14

2. Getting started with the Reference Platform

Function Connector Signal characteristicskA DC power input 7.5 V, 5AkB USBkC USBkD Video HDMIkE Network RJ45kF BB USB networkkG GPS 1 pps OUT SMA 5V DC suppliedkH Reference 1 pps OUT SMAkI GPS antenna SMBkJ Reference 10 MHz OUT SMAkK Reference 5 MHz OUT SMAkL 1 PPS IN SMA TTLkM General purpose I/O SMA TTLkN Beaglebone Black reset

Table 2.1: Rear panel electrical connections

A strain relief bulkhead is used for making the connection to the short ‘N’-
terminated cable.

2.3.3 Make other system connections

Network connection

A network connection is not required for operation as a time-transfer system
but may be useful to the user for maintenance and downloading data files.
Otherwise, a keyboard and monitor can be plugged in.

For operation as an NTP server, the unit will require a network connection.
The unit can operate using DHCP or with a static IP address. The default
is to use DHCP. The configured address can be conveniently found using
the front panel menu.

A static IP can be set by using the utility connmanctl or by editing the file
/etc/network/interfaces.

Keyboard and monitor

A HDMI monitor and USB keyboard and mouse can be used with the TTP.
However, this only allows a console login 2.4. The graphical login and desk-
top environment normally available have been disabled to reduce memory
usage.

15

2. Getting started with the Reference Platform

Time and frequency signals

Specifications of the various output signals are given in 3.3.

2.4 Logging in

The TTP runs under Debian Linux. The desktop environment normally
available has been disabled to reduce memory usage. Familiarity with a
command-line Linux environment is therefore essential for operating and
maintaining the TTP. It is beyond the scope of this manual to provide a
Linux tutorial. The reader should consult one of the many online resources
that exist.

Login is via the user cvgps (this name is used for historical reasons). The
default password is supplied separately and you should change this after
logging in.

2.5 The cvgps user

The cvgps user is the account used to log and process data.

It contains the following standard directories, some of which are mounted
on the SSD.

/home/cvgps

bin .. executables
etc .. configuration files
cggtts

logs

alarms

raw..............data files from the receiver, counter, and GPSDO
rinex

tmp

Figure 2.4: Directories in the cvgps account

Automatic operation is managed through the cvgps crontab file 5.2.

2.6 Checking operation

Upon startup, a number of alarms may be produced. All alarms should clear
within five minutes of startup. Information on alarms and troubleshooting
hints are given in ??. Troubleshooting will require logging into the system
(2.4).

16

2. Getting started with the Reference Platform

remote refid st t when poll reach delay offset jitter

Table 2.2: Checking NTP operation

You can check that logging of GNSS and counter data is occurring by looking
in the directory /home/cvgps/raw.

Processing of data takes place at UTC0015 daily. CGGTTS files will be
placed in the /home/cvgps/cggtts directory.

The TTP is NTP-synchronized using the GPS receiver’s time of day mes-
sages and its 1 pps. The TTP operates on UTC. NTP operation can be
checked using the command ntpq -p. This should display

2.7 Local configuration

To produce CGGTTS files, the processing software needs accurate antenna
coordinates. These can be obtained from the TTP receiver, using nv08extract.
More accurate coordinates can be obtained by submitting RINEX observa-
tion files to an online processing service. In the case of single frequency
observations, the NRCAN PPP service can be used.

2.8 Securing the system

2.9 Maintenance

2.9.1 Updating the software

Debian Linux is updated separately from the OpenTTP software.

Updating the kernel is a separate procedure.

Updating the OpenTTP software is most conveniently done via the git repos-
itory.

2.9.2 Replacing the SD card

To replace the SD card, remove the screws from the front, remove the front
panel and disconnect the cable connected to the LCD unit. Remove the
screws at the rear and slide the electronics assembly out. You can remove
the SD card without fully removing the electronics. Insert the new card and
reassemble taking care to align the printed circuit boards with the slots in
the enclosure.

17

3. The reference platform hard-
ware

This chapter provides a more detailed description of the reference platform
hardware.

3.1 Antenna

The DC voltage supplied to the antenna is selectable as either 3.3 or 5 V
with the jumper J1. The default is 5 V. Short circuit protection is provided
via the 1Ω fusible resistor R25.

The NV08C-CSM has two antenna inputs ANT-A (active) and ANT-P (pas-
sive). When the antenna is connected to ANT-P (default setting) the ex-
ternal DC power supply is used. If the antenna is connected to ANT-A, the
NV08-CSM board supplies 3.3 V DC and short circuit protection is provided
by the board.

3.2 Multi-channel counter/timer

The OpenTTP reference platform uses an Opal Kelly XEM6001 FPGA (Xil-
inx Spartan 6 LX16) development board to provide a multi-channel counter.
The counter is clocked at 200 MHz, so the full-range resolution is 5 ns. This
is adequate for the applications envisaged for the OpenTTP system.

Although the counter has six channels, only three (FIXME four?) are con-
nected in the current design 3.2. They are all configured with the system
reference as START, with the exception of Channel 5. This is configured
with the externally input 1 pps as START, and the time-transfer receiver’s
1 pps as STOP. This is to allow time-transfer for an external reference.

The XEM6001 has eight LEDS which may aid in fault-finding 3.1. In par-
ticular, the presence of 1 pps signals can be readily seen (the pulses are

18

3. The reference platform hardware

(a) Location of JP1

(b) JP1 voltages

Figure 3.1: Selection of antenna voltage using JP1

19

3. The reference platform hardware

Figure 3.2: The OpenTTP multi-channel counter.

extended so that they are visible) and the lock state of the PLL producing
the 200 MHz clock.

3.2.1 Counter delays

Differential delays, measured with respect to the system 1 pps, were mea-
sured by applying signals at the input of the FPGA.

3.3 Electrical specifications

20

3. The reference platform hardware

LED function

1 channel 1 pps (unused)
2 channel 2 pps (unused)
3 channel 3 pps (GPS receiver)
4 channel 4 pps (external pps)
5 channel 5 pps (unused)
6 channel 6 pps (GPIO)
7 GPIO enabled
8 Digital Clock Manager PLL is locked

Table 3.1: Status LEDs on Opal Kelly XEM6001 board

channel delay (ns)

1 TBA
2 TBA
3 TBA
4 TBA
5 TBA
6 TBA

Table 3.2: XEM6001 counter delays

GPS 1 pps out
Reference 1 pps out
Reference 10 MHz out
Reference 5 MHz out
1 pps in
General purpose I/O

Table 3.3: Electrical signals and their characteristics

21

4. Installing the software

4.1 Installation requirements

You will need a basic Linux development environment, including C/C++
compilers, Perl and python3. You will likely need the development packages
for:
boost C++ libraries
libgsl GNU scientific library

You may also need:
Time::HiRes Perl library

At present, both Perl and python3 scripts are used in OpenTTP. All new
script development is in python3. Eventually, all of the Perl scripts still in
active use (other than those supporting obsolete devices) will be replaced
with python3 scripts.

The python3 scripts generally don’t require any exotic libraries but you
may still need to install some extra python libraries, in particular if you are
installing into a minimal environment.

The above requirements are by no means comprehensive. What you will
need to install will depend very much on the Linux distribution you are
using.

4.2 Obtaining, building and installing the software

The OpenTTP software is obtained from the git repository hosted by GitHub.
There are two main branches, the ‘master’ and ‘develop’ branches. The ‘de-
velop’ branch is generally stable, but may occasionally be broken.

Clone the repository

git clone https://github.com/openttp/openttp.git

22

4. Installing the software

change directory to the repository and then check out the branch you want
to use

git checkout develop

4.2.1 Building the documentation

The documentation is written in LaTeX and uses some packages and fonts
that are generally packaged as ‘extras’ and will probably need to be installed.
The various packages used can be inspected in the file doc/manual/OpenTTPManual.tex.
To build the documentation as a PDF, change directory to doc/manual and
run make.

4.2.2 Installing the software

A scripts is provided for building and installing the software.

software/system/installsys.py

The installer has been used with RedHat Enterprise Linux, CentOS, Ubuntu
and Debian (on the BeagleBone Black).

installsys.py must be run first (with superuser privileges), because it
installs libraries which are needed by the GPSCV software.

installsys.py can also be used to install various targets individually. Run
installsys.pl -h to see the options available. This may be helpful when
trying to resolve problems with building the software.

install.py will archive any existing scripts and binaries, and create any
directories it needs in the current user’s home directory. Run install.py

-h to see the options available. One useful option is the capability to install
individual targets.

4.3 A minimal software setup

For users who wish to use their own hardware, this section describes the
minimum setup required for operation.

The OpenTTP software distribution is comprised of various C/C++ appli-
cations and Perl and python scripts. As a minimum, you will need:

TFLibrary.pm, a Perl module for commonly used tasks, such as reading
configuration files

ottplib.py, the python version of TFLibrary.pm
libconfigurator, a C library for parsing configuration files
lockport, a utility to create a UUCP lock file
mktimetx, to create time-transfer files

23

4. Installing the software

openttp

doc

software

gpscv

common

bin

etc

process

mktimetx

prs10c

gpsdo

javad

nvs

septentrio

trimble

ublox

system

device-tree-overlays

src

dioctrl

fpga

lcdmon

libconfigurator

ntpd

okbitloader

okcounterd

OpenOK2

ppsd

sysmonitor

udev

Figure 4.1: Overview of the OpenTTP software source

24

4. Installing the software

one of the OpenTTP-provided scripts to log your receiver
one of the OpenTTP-provided scripts to log your counter/timer

You must use one of the OpenTTP receiver logging scripts with your GNSS
receiver because mktimetx expects a custom file-format 5.4. In particular,
the receiver’s native binary formats are not readable by mktimetx. Simi-
larly, OpenTTP uses a custom file format for the counter-timer measurement
files, although in this case, conversion from another format will probably be
straight-forward. Most likely, users will have to provide their own software
for logging their counter/timer, given the large number of possible devices
here, and the limited support within OpenTTP.

You may also find the following useful:
kickstart.py for automatic start of logging processes
runmktimetx.pl for automated processing, and reprocessing of time

transfer data files
gziplogs.py for managing log file compression

4.4 Common configuration problems

4.4.1 UUCP lock file creation

UUCP lock files are used to prevent non-OTTP processes from opening
serial ports while they are in use. You need to set the location for lock
file creation specific to the operating system, and ensure that the OTTP
user (cvgps typically) has the right permissions to write to this location.
This is typically achieved by adding the user to the appropriate group. For
example, on Ubuntu 18 the lock directory is /var/lock. In this case, the
directory is world writeable, so the OTTP user does not need to belong to
any supplementary groups.

25

5. GPSCV software

This chapter describes software related to GPSCV time-transfer.

5.1 Software overview

Time-transfer files are produced by mktimetx from the GNSS receiver logs
and counter/timer measurements. The time-transfer files are in RINEX
observation and CGGTTS format. Currently, CGGTTS-format files are
only produced for GPS. Figure ?? illustrates the processing chain TODO.

The OpenTTP software suite is catalogued in Table 5.1

5.2 crontab

Automatic logging, processing and archival of data is co-ordinated via the
user cvgps’ crontab.

A minimal crontab for the user cvgps looks like this:

Check that all logging is running every 5 minutes

*/5 * * * * /usr/local/bin/kickstart.pl # See ~/etc/

↪→ kickstart.conf

Run the processing of the data at 00:15

15 0 * * * nice $HOME/bin/runmktimetx.pl >/dev/null 2>&1

Give the processing some time to complete, then zip the

↪→ files at 00:45

45 0 * * * nice $HOME/bin/gziplogs.pl >/dev/null 2>&1

Check the status of the system once a day, just before

↪→ the day rollover

56 23 * * * $HOME/bin/checkstatus.pl >$HOME/

↪→ lockStatusCheck/status.dat

26

5. GPSCV software

program

Data processing
mktimetx core program
runmktimetx.pl
mkcggts.py
rnx2cggtts

TIC logging
hp5313xlog.pl
ks53230log.py
cnt9xlog.py
okxemlog.pl
prs10log.pl
ticclog.py

GNSS receiver logging
jnslog.pl Javad
nv08log.pl NVS
plrxlog.py Septentrio
restlog.pl Trimble Resolution T
ublox9log.py ublox
ubloxlog.pl ublox

GNSS receiver utilities
jnsextract.pl
nv08extract.pl
nv08info.pl
restextract.pl
restinfo.pl
ubloxextract.py
ubloxmkdev.py

Analysis tools
cggttsqc.py
cmpcggtts.py
editcggtts.py
editrnxnav.py
editrnxobs.py
ticqc.py

Miscellaneous
log1Wtemp.pl

Table 5.1: GPSCV software overview

27

5. GPSCV software

showing the three essential processes of logging, processing and archival of
data.

The active crontab can be examined with the command crontab -l. A
default crontab is saved in /home/cvgps/etc/crontab.

5.3 Configuration file format

Configuration files use a common format and are plain text files, designed
to be easily edited via a command-line editor because in many applications,
only shell access to the system will be available.

The file is usually divided into sections, with section names delimited by
square brackets []. Entries in each section are of the form:

key = value

For example,

[Receiver]

manufacturer = Trimble

model = Resolution T

defines a section Receiver and the two keys: manufacturer and model.

The notation Section::Key is used to fully specify keys. For example,
Receiver::model and Receiver::manufacturer specify the two keys above.

Keys and section names are not case-sensitive. In particular, the python
and Perl libraries which provide functions for reading the configuration files
convert keys and section names to lower case. The case of key values is
preserved, since this may be signficant eg path names.

Leading and trailing whitespace is removed from keys, key values and section
names.

Comments begin with a ‘#’.

Some keys define a list of sections. For example, the comma-separated list
of values for CGGTTS::outputs

[CGGTTS]

outputs = c1-code,p1-code,p2-code

defines three sections: c1-code, p1-code, and p2-code. This is a bodge
which would be more elegantly addressed using an extensible format like
XML, but it has proven to be sufficient for our needs.

28

5. GPSCV software

5.3.1 Paths

Paths to files specified in a configuration file are constructed with the fol-
lowing precedence:

1. If the path begins with a leading slash, then it is interpreted as an
absolute path

2. If a non-absolute path is specified, it is interpreted as being relative
to the users’s home directory (or where the configuration file allows
specification of a different root path eg in gpscv.conf, relative to that
root path)

3. Otherwise, the default path is used.

Most software in OpenTTP follows these conventions.

5.4 Data file formats

5.4.1 GPS receiver

This text file records messages from the GPS receiver. The native format of
the messages can be a mix of ASCII and binary messages. Binary messages
are hexadecimal-encoded for saving in the log file. Some logging scripts
record ancillary information, such as commands sent to the receiver. Com-
ments in the log file are allowed, prefaced by a ‘#’ character. The ‘@’
character is used to tag lines containing special information that needs to
be parsed by the processing software.

Messages are successive lines of the form:

<message_id> <time_stamp> <message>

Example:

TO 00:00:02 cdfbc75a9a8c353fc5

Hex encoding of binary messages results in much larger files but these com-
press to a size not much larger than the original binary data.

The exception to this is the Septentrio logging script, which uses the native
SBF format. Some logging scripts have the option of logging data in the
receiver’s native format, to facilitate use of other tools.

5.4.2 Time-interval counter

This text file records the difference between GNSS receiver and the Reference
Oscillator 1 pps, measured each second. The convention is that the Reference
oscillator provides the start trigger. Entries are successive lines of the form:

29

5. GPSCV software

Section Key

Antenna antenna number, antenna type, delta H, delta N, delta E,
frame, marker name, marker number, X, Y, Z

CGGTTS BIPM cal id, comments, create, ephemeris, ephemeris file,
ephemeris path, internal delay, lab id, maximum DSG, min-
imum elevation, minimum track length, naming convention,
outputs, reference, receiver id, revision date, version, code,
constellation, path

Delays antenna cable, reference cable

Counter file extension, GPIB address, header generator, lock file, log-
ger, logger options, okxem channel, port

Misc gzip

Paths CGGTTS, counter data, processing log, receiver data,
RINEX, tmp

Receiver configuration, elevation mask, logger, logger options, manu-
facturer, model, observations, port, pps offset, synchroniza-
tion, pps synchronization delay, status file, timeout, version

Reference file extension, logging interval, log path, log status, oscilla-
tor, power flag, status file

RINEX agency, create, observer, version

Table 5.2: Summary of gpscv.conf entries

<time_of_day> <time_difference>

where the time difference is in seconds.
Example:

00:00:04 +4.0821E-006

5.5 gpscv.conf - the core configuration file

A single configuration file, gpscv.conf, provides configuration information
to most of the OpenTTP software. gpscv.conf is used by mktimetx, re-
ceiver logging scripts, TIC logging scripts,receiver utilities and so on.

It uses the format described in 5.3.

5.5.1 [Antenna] section

Entries used to create the RINEX header are:

2 antenna number

2 antenna type

30

5. GPSCV software

2 delta H, delta E, delta N

2 marker name

2 marker number

2 X,Y,Z

Entries used to create the CGGTTS header are:

2 X,Y,Z

antenna number
This appears as ANTNUM in the RINEX header.

Example:

antenna number = A567456

antenna type
This appears as ANTTYPE in the RINEX header.

Example:

antenna type = Ashtec

delta H
This appears as DELTA H in the RINEX header.

Example:

delta H = 0.0

delta E
This appears as DELTA E in the RINEX header.

Example:

delta E = 0.0

delta N
This appears as DELTA N in the RINEX header.

Example:

delta N = 0.0

frame
This appears as FRAME in the CGGTTS header.

Example:

frame = ITRF2010

marker name
This appears as MARKER NAME in the RINEX header.

Example:

31

5. GPSCV software

marker name =

marker number
This appears as MARKER NUMBER in the RINEX header.

Example:

marker number =

X
This appears as X in the CGGTTS header and APPROX POSITION XYZ

in the RINEXheader.
Example:

X = +4567890.123

Y
This appears as Y in the CGGTTS header and APPROX POSITION XYZ

in the RINEXheader.
Example:

Y = +2345678.90

Z
This appears as Z in the CGGTTS header and APPROX POSITION XYZ

in the RINEXheader.
Example:

Z = -1234567.890

5.5.2 [CGGTTS] section

Entries in this section control the format and content of CGGTTS files and
filtering applied to CGGTTS tracks in the final output.

To create CGGTTS output you must enable it:

outputs
This defines a list of sections which in turn define the desired CGGTTS
outputs.
Example:

outputs = CGGTTS-GPS-C1,CGGTTS-GPS-P1,CGGTTS-GPS-P2

A CGGTTS v2E header looks like:

CGGTTS GENERIC DATA FORMAT VERSION = 2E

REV DATE = 2018-03-20

RCVR = NVS NV08 undefined 1999 mktimetx,v0.1.4

32

5. GPSCV software

CH = 32

IMS = 99999

LAB = NMIA

X = -4648239.852 m

Y = +2560635.623 m

Z = -3526317.023 m

FRAME = ITRF2008

COMMENTS = none

INT DLY = 0.0 ns (GPS C1) CAL_ID = none

CAB DLY = 0.0 ns

REF DLY = 0.0 ns

REF = UTC(AUS)

CKSUM = 1A

Entries in the header than can be defined in the CGGTTS section are as
below.

comments
This defines a single COMMENTS line in the CGGTTS header. The output
line will be truncated at 128 characters.
Example:

comments = none

lab
This defines the LAB line.
Example:

lab = NMI

reference
This defines REF in the CGGTTS header.
Example:

reference = UTC(XXX)

revision date
This defines REV DATE in the CGGTTS header. It must be in the format
YYYY-MM-DD.
Example:

revision date = 2015-12-31

create
This defines whether or not CGGTTS files will be generated by mktimetx.
Example:

create = yes

33

5. GPSCV software

ephemeris
This defines whether to use the receiver-provided ephemeris or a user-provided
ephemeris (via a RINEX navigation file). If a user-provided ephemeris is
specified then ephemeris path and ephemeris file must also be speci-
fied.
Example:

ephemeris = receiver

ephemeris file
This specifies a pattern for user-provided RINEX navigation files. Currently,
only patterns of the form XXXXddd0.yyn are recognized.
Example:

ephemeris file = brdcddd0.yyn

ephemeris path
This specifies the path to user-provided RINEX navigation files.
Example:

ephemeris path = igsproducts

lab id
This defines the two-character lab code used for creating BIPM-style file
names, as per the V2E specification.
Example:

lab id = AU

maximum DSG
CGGTTS tracks with DSG lower than this will be filtered out. The units
are ns.
Example:

maximum DSG = 10.0

minimum elevation
CGGTTS tracks with elevations lower than this will be filtered out. The
units are degrees.
Example:

minimum elevation = 10

minimum track length
CGGTTS tracks shorter than this will be filtered out. Tracks meeting the
criterion are not necessarily contiguous. The units are seconds.
Example:

34

5. GPSCV software

minimum track length = 390

maximum URA
GPS ephemerides with URA greater than this will not be used. They will
still be written to RINEX navigation files, however.
Example:

maximum URA = 3.0

naming convention
Defines the CGGTTS file naming convention. Valid options are ‘plain’
(MJD.cctf) and ‘BIPM’ styles. The lab id and receiver id should be
defined in conjunction with BIPM-style filenames.
Example:

naming convention = BIPM

receiver id
This defines the two-character receiver code used for creating BIPM-style
file names, as per the V2E specification.
Example:

receiver is = 01

version
This defines the version of CGGTTS output. Valid versions are v1 and v2E.
The lab id and receiver id should be defined in conjunction with v2E
ouput
Example:

version = v2E

CGGTTS output sections

Multiple CGGTTS outputs can be defined, allowing for different constella-
tion and signal combinations. An example of a CGGTTS output section is
as follows:

[CGGTTS-GPS-C1]

constellation=GPS

code=C1

path=cggtts

BIPM cal id = none

internal delay = 11.0

BIPM cal id
This defines CAL ID for the internal delay, as used in v2E CGGTTS headers.
Example:

35

5. GPSCV software

CGGTTS name RINEX name

C1 C1C
P1 C1P
E1 C1C
B1 C2I
C2 C2C
P2 C2P
B2 C7I

Table 5.3: Correspondence of CGGTTS and RINEX signal names.

BIPM cal id = none

code

CGGTTS codes can be specified using either the two letter code, for example
‘C1’ as described in the CGGTTS V2E specification, or three letter RINEX
v3.03 observation codes. Example:

code = P1+P3

constellation
This defines the GNSS constellation. Only GPS is supported currently for
CGGTTS generation.
Example:

constellation = GPS

internal delay
This defines INT DLY in the CGGTTS header. The units are ns.
Example:

INT DLY = 0.0

path
This defines the directory in which output files are placed.
Example:

path = cggtts

In v1 CGGTTS files, the delays are specified via INT DLY, CAB DLY and
ANT DLY. For v2E files, the delays may be specified via the ‘system delay’
and ‘total delay’. If multiple delays (eg both internal and system delay are
present) are defined in gpscv.conf, the precedence order is internal, system
and then total delay.

36

5. GPSCV software

The entries used to specify system and total delay are:

system delay
This defines SYS DLY in the CGGTTS header. The units are ns.
Example:

SYS DLY = 0.0

total delay
This defines TOT DLY in the CGGTTS header. The units are ns.
Example:

TOT DLY = 0.0

5.5.3 [Counter] section

file extension
This defines the extension used for time interval measurement files. The
default is ‘tic’.
Example:

file extension = tic

configuration
This sets a configuration file for the counter. Its contents are defined by the
calling script. In the case of HP5313x counters for example, it lists SCPI
commands sent to initiliaze the counter.
Example:

configuration = etc/hp53131.conf

flip sign
The processing software eg mktimetx assumes that TIC measurements are
started by the reference and stopped by the GNSS receiver. If you need
to invert the sign of the measurements, set the option ‘flip sign’ to ‘yes’,
Example:

flip sign = no

GPIB address
For GPIB devices, the GPIB address must be defined.

Example:

GPIB address = 3

GPIB converter
This defines the GPIB interface converter (eg RS232 to GPIB). Currently

37

5. GPSCV software

the only valid values is ‘Micro488’.
Example:

GPIB converter = Micro488

header generator
A header for the log file can be optionally added to the log file, using the
output of a user provided script. Output should be to stdout. Each line
will have a “#” automatically prepended to it.
Example:

header generator = bin/myticheader.pl

lock file
This defines the device lock file, used to prevent multiple instances of the
logger from being started.
Example:

lockfile = okxem.gpscv.lock

logger
This defines the counter logging script.
Example:

logger = okxemlog.pl

logger options
This defines options passed to the counter logging script.
Example:

logger options =

mode
This defines the operating mode of the counter. Valid values are timestamp
and time interval Currently, this is only used by the TAPR TICC.
Example:

mode = timestamp

okxem channel
The OpenTTP counter is multi-channel so the channel to use (1-6) must

be specified.
Example:

okxem channel=3

port
This defines the port used to communicate with the counter. It’s value

38

5. GPSCV software

depends on the type of counter. For the XEM6001, it’s a Unix socket. For
serial devices, it’s a device name like /dev/ttyUSB0.
Example:

this is the port used by okcounterd

port = 21577

timestamp format
This controls the format of timestamps used in the counter log file. Valid

values are unix and time of day. Currently, this is only used by the TAPR
TICC.
Example:

timestamp format = time of day

5.5.4 [Misc] section

gzip
Defines the compression/decompression program used in conjunction with
counter and receiver log files.
Example:

gzip = /bin/gzip

5.5.5 [Delays] section

antenna cable
This is ANT DLY as used in the CGGTTS header. Units are ns.
Example:

antenna cable = 0.0

reference cable
This is REF DLY as used in the CGGTTS header. Units are ns.
Example:

reference cable = 0.0

5.5.6 [Paths] section

Paths follow the rules described in .

root
Defines the root path to be used with all other paths, unless they are

specified as absolute paths. As with other paths specified in gpscv.conf, it
is interpreted as being relative to the user’s home directory, unless prefaced
with a ‘/’.
Example:

39

5. GPSCV software

root = test/newreceiver

CGGTTS
Defines the default directory used for CGGTTS files. This is typically over-
ridden by the output directory that can be defined in each CGGGTS output
section.
Example:

CGGTTS = cggtts

counter data
Defines the directory used for TIC data files.
Example:

counter data = raw

processing log
Defines the directory where the mktimetx processing log is written.
Example:

processing log = logs

receiver data
Defines the directory used for GNSS receiver raw data files.
Example:

receiver data = raw

RINEX
Defines the directory used for RINEX files.
Example:

RINEX = rinex

tmp
Defines the directory used for intermediate and debugging files.
Example:

tmp = tmp

onewire temp data
Defines the directory used to write temperature logs.
Example:

onewiretemp data = raw/onewire

uucp lock
Sets the directory used to write UUCP lock files. UUCP lock files are used

40

5. GPSCV software

with serial devices to prevent other processes (eg minicom) opening the serial
port while it is in use. The default is /var/lock but this varies with the
operating system and its version so you will need to check this.
Example:

This is for Debian

uucp lock = /var/run/lock

rinex l1l2
Defines the directory used to write RINEX files with all observations, typi-

cally so that precise antenna coordinates can be obtained. This is only used
with dual frequency Javad receivers.
Example:

rinex l1l2 = rinex/l1l2

5.5.7 [Receiver] section

configuration
This specfies a file to be used to configure the receiver. Currently, it is only

used with Javad receivers.
Example:

configuration = rx.cfg

elevation mask
This sets an elevation mask for tracking os satellites - below this elevation,
satellites are ignored. The units are degrees. This may not be implemented
for all receivers.
Example:

elevation mask = 0

file format
Data logged by the receiver can be logged in either OpenTTP format (‘ottp‘)
or its native binary format (‘native‘). However, data logged in native format
cannot presently be used by mktimetx.
Example:

file format = ottp

logger
This is the script used to configure and log messages from the GNSS receiver.
Example:

logger = jnslog.pl

41

5. GPSCV software

logger options
These are options passed to the receiver logging script.
Example:

logger options =

manufacturer
This defines the manufacturer of the receiver. Together with the model
and version, this sets how data from the receiver is processed. For a list of
supported receivers see XX.
Example:

manufacturer = Javad

model
This is the receiver model.For a list of supported receivers see XX.
Example:

model = HE_GGD

version
This can be used to identify the firmware version in use, for example.
Example:

version = 2.6.1

observations
This is a list of GNSS systems which will be tracked by the receiver. In
some applications where a multi-GNSS receiver is used, it may be desirable
to track only one GNSS system so this sets which system is used. More gen-
erally, low-end multi-GNSS receivers are typically only capable of tracking
certain combinations of GNSS systems so this is used to select the required
combination. Example:

observations = GPS

port
This is the serial port used for communication with the receiver.
Example:

port = /dev/ttyS0

pps offset
This is an offset programmed into the GNSS receiver. Its purpose is to
ensure that the counter triggers correctly, particularly HP5313x counters,
which will only trigger every two seconds if the start trigger slips slightly
behind the stop trigger. Suitable values are determined by the long-term
stability of the reference, compared with GPS. The units are ns.
Example:

42

5. GPSCV software

pps offset = 3500

pps synchronization
This is a Javad-specific option. The logging script will force a synchroniza-

tion of the receiver’s internal time scale with the input 1 pps.
Example:

pps synchronization = no

pps synchronization delay
This is a Javad-specific option. Synchronization of the receiver’s internal

time scale with the input 1 pps is delayed for this time after reset of the
receiver. The units are seconds.
Example:

pps synchronization delay = 300

status file
The status file contains a summary of the current state of the receiver,tyically
at least the currently visible GNSS satellites. Other software, for example
lcdmonitor, uses this information.
Example:

status file = logs/rx.status

timeout
The logging script will time out and exit if no messages are received for this
period.
Example:

timeout = 60

time-transfer
Receivers can be configured for non-time transfer operation. Typically, in
this mode fewer messages are enabled and logged.
Example:

time-transfer = yes

sawtooth phase
This defines which pps the sawtooth correction is to be applied to. Valid
values are ‘current second’, ‘next second’ and ‘receiver specified’. ‘Current’
means for the pps just generated.
Example:

sawtooth phase = current second

43

5. GPSCV software

year commissioned
The year the receiver was commissioned. This is used in the CGGTTS
header.
Example:

year commissioned = 1999

5.5.8 [Reference] section

file extension
This defines the extension used for Reference status logs.

Example:

file extension = .rb

logging interval
This defines the interval between status file updates. The units are seconds.

Example:

logging interval = 60

log path
This defines where status logs are written to.

Example:

log path = raw

log status
This enables status logging of the Reference.

Example:

log status = yes

oscillator
This identifies the installed oscillator, so that device-specific handling can
be implemented.
Example:

oscillator = PRS10

power flag
This defines the file used to flag that the Reference has lost power, and

needs rephasing. Currently, this only has meaning for the PRS10. It is used
ntpd to disable the refclock corresponding to the PRs10’s 1 pps.
Example:

power flag = logs/prs10.pwr

44

5. GPSCV software

status file
In the case of the PRS10, this consists of the six status bytes and sixteen

ADC values.
Example:

status file = logs/prs10.status

5.5.9 [RINEX] section

Entries in this section control the format and content of RINEX files. RINEX
observation and navigation files in version 2 and version 3 formats can be
produced. RINEX observations

agency
This specifies the value of the AGENCY field which appears in RINEX

observation file headers.
Example:

agency = MY AGENCY

create
This defines whether or not RINEX files will be generated.
Example:

create = yes

force v2 name
This forces a V2 name for V3 RINEX output.
Example:

force v2 name = no

observations
Normally, only code observations are output by mktimetx. To output phase
observations, set this to ’all’.
Example:

observations = code

observer
This specifies the value of the OBSERVER field which appears in RINEX

observation file headers. If the observer is specified as ‘user’ then the envi-
ronment variable USER is used.
Example:

observer = user

45

5. GPSCV software

version
This specifies the version of the RINEX output. Valid versions are 2 and 3.

Example:

version = 2

5.6 mktimetx

mktimetx is the core OpenTTP application. It creates CGGTTS and RINEX-
format time-transfer files.

In the RINEX files, the code measurements have been corrected for any
offsets between the raw measurements and the output 1 pps, and then the
difference between the external clock and output pps (obtained from the
TIC measurements) is applied ie the raw code measurements are reported
with respect to the external clock.

5.6.1 usage

When run with no arguments, mktimetx uses the default GPSCV processing
configuration file ~/gpscv.conf and processes data from the preceding day.

The command line options are
--configuration <file> specify the configuration file
--debug <file> turn on debugging to file. To debug to stderr, just

use ‘stderr’.
--disable-tic disable the use of sawtooth-corrected counter/timer mea-

surements
--help show help
-m <MJD> specify the mjd
--start <hh:hh:ss/hhmmss> set the start time
--stop <hh:hh:ss/hhmmss> set the stop time
--short-debug-message print out shorter debugging messages
--sv-diagnostics save raw measurements for each SV in a file. Each SV

is in a separate file.
--timing-diagnostics save timing diagnostics in a file
--verbosity <n> set the level of debugging verbosity. Valid values are

1 to 4. A verbosity of 4 will create a file several hundred MB in size.
--version print version information and exit

Example:

mktimetx --configuration test.conf -m 57803 --debug stderr

↪→ --verbosity 1

46

5. GPSCV software

Section Key

Antenna antenna number, antenna type, delta H, delta N, delta E,
frame, marker name, marker number, marker type, x, y, z

CGGTTS comments, create, lab, lab id, maximum dsg, minimum track
length,naming convention, outputs, receiver id, reference, re-
vision date, version

Counter file extension, flip sign

Delays antenna cable, reference cable
Misc gzip
Paths cggtts, counter data, receiver data, processing log, rinex,

root, tmp
Receiver file extension, manufacturer, model, observations, pps offset,

sawtooth phase, version

RINEX agency, create, observer, version

Table 5.4: Summary of gpscv.conf entries used by mktimetx. Optional
entries are italicised.

runs mktimetx in debugging mode, writing to stderr using the configuration
file test.conf and processing data for MJD 57803.

5.6.2 configuration file

mktimtex uses gpscv.conf. Keys used by it are listed in table 5.4.

5.6.3 log file

5.7 runmktimetx.pl

runmktimetx.pl provides a convenient way to process multiple days of data
and to run any missed processing.

runmktimetx.pl uses gpscv.conf. There are no entries in gpscv.conf

specific to runmktimetx.pl

runmktimetx.pl doesn’t produce a log file.

5.7.1 usage

runmktimetx.pl is normally run as a cron job.

To run runmktimetx.pl on the command line, use

runmktimetx.pl [option] . . . [Start MJD [Stop MJD]]

47

5. GPSCV software

Start MJD and Stop MJD specify the range of MJDs to process. If a single
MJD is specified, then data for that day is processed. If no MJD is specified,
the previous day’s data is processed.

The options are:
-a <file> extend check for missed processing back n days (the default

is 7)
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-x run missed processing
-v print version information and exit

5.8 mkcggtts.py

mkcggtts.py is used for scripting the generation of CGGTTS files from
RINEX navigation and observation files using a third party tool. Currently,
the only tool supported is r2cggtts. It will default to rnx2cggtts, when
this matures.

5.8.1 usage

mkcggtts.py [OPTION] . . . [mjd [mjd . . .]]

The command line options are:
--help,-h print the help information and exit
-–config <file>, -c <file> use the specified configuration file
--debug,-d print debugging information to stderr
--leapsecs <n> set the number of leap seconds
--previousmjd when no MJD (or one MJD) is given, MJD-1 is added to

the MJDs to be processed
--version,-v show the version information and exit

The leap second count in paramCGGTTS is determined from the RINEX nav-
igation file if possible. Otherwise, it can be specified manually via the
--leapsecs option.

The --previousMJD option is intended to be used in automated daily pro-
cessing using r2cggtts, to reprocess data for any missed track at the end
of the day.

5.8.2 configuration file

See the sample!

48

5. GPSCV software

5.8.3 examples

None yet!

5.9 rnx2cggtts

rnx2cggtts generates CGGTTS files from RINEX observation and navi-
gation files. Currently, it will only generate CGGTTS from GPS measure-
ments. RINEX files must be version 3.

CGGTTTS outputs have been compared with the output of r2cggtts.
Known differences are:

1. Occasionally, a different IODE will be chosen. When comparing CG-
GTTS between r2cggtts and rnx2cggtts, tracks should be matched on
IODE, otherwise there will be outliers at the 5 to 10 ns level.

2. In P3 files, MDIO is modelled ionosphere, and not MSIO

3. Satellite ELV and AZM are evaluated from a fit to the trajectory,
rather than the middle point from the data set for a track.

5.9.1 usage

To run kickstart.py on the command line, use:

rnx2cggtts [option] . . .

The command line options are:
–configuration FILE, -c FILE use the specified configuration file
–debug FILE, -d FILE print debugging infomration to file-
–shorten shorten debugging messages
–verbosity <n> set debugging verbosity
–help, -h show help and exit
–licence show the software licence and exit
–version, -v print version information and exit

5.9.2 configuration file

The configuration file is similar to gpscv.conf. A minimal configuration
file for P3 output is:

[RINEX]

station = MOST01AUS

[Antenna]

X = -4648240.85

Y = +2560636.45

49

5. GPSCV software

Z = -3526317.79

[CGGTTS]

outputs = CGGTTS-GPS-P3

[GPS delays]

kind = internal

codes = C1C,C1W,C2W

delays = 0.0,0.0,0.0

BIPM cal id = UNCALIBRATED

[CGGTTS-GPS-P3]

constellation=GPS

code=C1W+C2W

path=cggtts

[Paths]

rinex observations = RINEX

rinex navigation = RINEX

[RINEX] section

station
This the RINEX station name. Both V2 (4 characters) and V3 (9 characters)
are allowed. The station name is used to construct RINEX file names.
Currently, these files are expected to be decompressed.
Example:

station = MOST01AUS

[Antenna] section

X,Y,Z
These are the ECEF antenna coordinates, in metres. They are used in the
calculations and are written to the CGGTTS header.
Example:

X = -4648240.85

Y = +2560636.45

Z = -3526317.79

frame
This is the reference frame applicable to the antenna coordinates. It is only
used in the CGGTTS header and is optional.
Example:

50

5. GPSCV software

frame = ITRF2014

[Receiver] section

manufacturer
This is identifies the manufacturer of the GNSS receiver. It is only used in
the CGGTTS header in the RCVR line and is optional.
Example:

manufacturer = Septentrio

model
This identifies the GNSS receiver model. It is only used in the CGGTTS
header in the RCVR line and is optional.
Example:

model = mosaic-T

serial number
This identifies the GNSS receiver serial number. It is only used in the
CGGTTS header in the RCVR line and is optional.
Example:

serial number = 123456

commissioning year
This identifies year the GNSS receiver started operation. It is only used in
the CGGTTS header in the RCVR line and is optional.
Example:

commissioning year = 2022

channels
This identifies the number of receiver channels. It is only used in the CG-
GTTS header and is optional.
Example:

channels = 768

[CGGTTS] section

outputs
This is a comma-separated list of CGGTTS output sections. Each item in
the list must have a corresponding section.
Example:

outputs = CGGTTS-GPS-P3

51

5. GPSCV software

version
This is the CGGTTS version. Only V2E is supported at present. The
version is optional and the default is V2E.
Example:

version = V2E

naming convention
This specifies the style of the CGGTTS file name. Plain specifies a filename
in the format MJD.cctf. BIPM specifies a filename in the format used by the
BIPM. This is optional and the default is Plain.
Example:

naming convention = BIPM

reference
This specifies the laboratory reference. This is used in the CGGTTS header
and is optional; the default is UTC(XLAB).
Example:

reference = UTC(AUS)

lab
This specifies the laboratory. This is used in the CGGTTS header and is
optional;the default is XLAB.
Example:

lab = NMIA

comments
This is used in the CGGTTS header and is optional;the default is an empty
string. Example:

comments = antenna moved MJD 59601

ref dly
This is the reference delay (REF DLY). Its units are nanoseconds. Its use
is optional and the default value is zero. Example:

ref dly = 99.3

cab dly
This is the cable delay (CAB DLY). Its units are nanoseconds. Its use is
optional and the default value is zero. Example:

cab dly = 120.2

52

5. GPSCV software

minimum track length
This sets the minimum track length that is acceptable for reporting a satel-
lite track. The units are seconds. This is optional and the default is 390 s.
Example:

minimum track length = 750

maximum dsg
This sets the maximum value of DSG that is acceptable for reporting a
satellite track. The units are nanoseconds. This is optional and the default
is 100 ns.
Example:

maximum dsg = 10

minimum elevation
This sets the minimum satellite elevation (at the middle of the track) that
is acceptable for reporting a satellite track. The units for this option are
degrees. This is optional and the default is 10 degrees.
Example:

minimum elevation = 15

maximum ura
This sets the maximum URA for a broadcast ephemeris to be acceptable
for use in calculations. Typically, a receiver will report 2 metres, with a few
reported at 2.8 metres. IGS ephemerides however will sometimes contain
entries with very high URA and these should not be used. The units for this
option are metres. This is optional and the default is 3 metres. Example:

maximum ura = 3.0

[GPS delays] section

kind
This specifies the kind of delay for the specified . Valid values are internal,system
and total.
Example:

kind = internal

codes
This defines a comma-separated list of codes for which delays are defined.
Use RINEX V3 pseudorange observation codes, as per page 17 of the RINEX
V3.04 specification.
Example:

codes = C1C,C1W,C2W

53

5. GPSCV software

delays
This sets the value of each delay defined by codes, given as a comma-
separated list in the same order as in codes. The units are ns.
Example:

delays = 23.0,22.0,24.0

BIPM cal id
This sets the BIPM calibration identifier, written to the CGGTTS header. It
overrides the global [CGGTTS] option of the same name. Its use is optional.
Example:

BIPM cal id = UNCALIBRATED

[Paths] section

rinex observations
The specifies the path to the RINEX observation files.
Example:

rinex observations = RINEX

rinex navigation
The specifies the path to the RINEX navigation files.
Example:

rinex navigation = RINEX

CGGTTS output sections

constellation
Valid values are GPS, Galileo, GLONASS and Beidou. Only GPS is sup-
ported at present though.
Example:

constellation = GPS

code
This specifies the code combination to use in the CGGTTS output. For
ionosphere-free combinations, both codes are specified, separated by a ’+’.
Use RINEXV3 pseudorange observation codes, as per page 17 of the RINEX
V3.04 specification. These need to be the same as used in the RINEX
observation file.
Example:

code = C1W + C2W

54

5. GPSCV software

path
This specifies the path that the files will be written to.
Example:

path = cggtts\C1

report msio
For single frequency outputs, this indicates whether or not to use MSIO.
Example:

report msio = yes

msio codes
For single frequency outputs where use of MSIO is enabled, this specifies the
codes to use for calculating MSIO. Use RINEX V3 pseudorange observation
codes, as per page 17 of the RINEX V3.04 specification.
Example:

msio codes = C1W + C2W

5.10 cnt9xlog.py

Pendulum CNT-90 and CNT-91 counters are supported via USBTMC (in
particular, the Python usbtmc module).

5.10.1 usage

cnt9xlog.py [option] . . .

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

5.10.2 configuration file

There is an optional file cnt9x.cmds which lists SCPI commands used to
configure the counter. This file overrides the default configuration:

:SENS:TINT:AUTO OFF

:SENS:FUNC ’TINT 1,2’

:INP1:COUP DC # coupling DC

:INP2:COUP DC

:INP1:IMP 50 # impedance 50 ohms

:INP2:IMP 50

55

5. GPSCV software

:INP1:LEVEL 1.0

:INP2:LEVEL 1.0

:INP1:SLOPE POS

:INP2:SLOPE POS

5.11 hp5313xlog.pl

HP and Agilent 53131 and 53132 counters are supported, in combination
with the IOTech GPIB to RS232 converter.

5.11.1 usage

hp5313xlog.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

5.11.2 configuration file

There is a file hp5313x.cmds which lists the SCPI commands used to con-
figure the counter. For example:

:FUNC ’TINT 1,2’ # time interval

:SENS:EVEN1:LEVEL:ABS 1.0 # trigger level 1 volt

:SENS:EVEN2:LEVEL:ABS 1.0 #

:SENS:EVEN1:SLOP POS # trigger on positive slope

:SENS:EVEN2:SLOP POS

:INP1:ATT 1 # input attenuation x1

:INP2:ATT 1

:INP1:COUP DC # coupling DC

:INP2:COUP DC

:INP1:IMP 50 # impedance 50 ohms

:INP2:IMP 50

It has the following specific configuration file entries in gpscv.conf:

2 counter:configuration

2 counter:gpib address

2 counter:gpib converter

56

5. GPSCV software

5.12 ks53230log.py

Keysight 53230 counters are supported via USB TMC. The script auto-
matically detects the situation where the start trigger occurs after the stop
trigger, resulting in incorrect triggering.

5.12.1 usage

ks53230log.py [option] . . .

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

5.12.2 configuration file

The default is to configure the counter for time-interval measurement of a
pair of 1 pps signals, For example:

CONF:TINT (@1),(@2)

TRIG:SLOP POS

SYSTEM:TIMEOUT 3

:INP1:PROB 1

:INP2:PROB 1

:INP1:COUP DC

:INP2:COUP DC

:INP1:IMP 50

:INP2:IMP 50

:INP1:SLOP POS

:INP2:SLOP POS

:INP1:LEV 1

:INP2:LEV 1

This can be overridden by creating a file with the desired SCPI commands.

It has the following specific configuration file entries in gpscv.conf:

x TBA

5.13 okxemlog.pl

The OpenTTP reference platform includes a multi-channel TIC and this
script communicates with the daemon okcounterd via a local TCP/IP

57

5. GPSCV software

socket. The script will exit if no data are returned for more than two min-
utes.

5.13.1 usage

okxemlog.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

It has the following specific configuration file entries in gpscv.conf:

2 counter::okxem channel.

5.14 prs10log.pl

The Stanford PRS10 rubidium standard has a 1 pps input port that is typ-
ically used to lock the PRS10 to a GNSS receiver. The PRS10 timetags
each input 1 pps with respect to its own 1 pps and can report these mea-
surements. It can thus be also be used as a time-interval counter. In this
application, the lock to the input 1 pps is disabled (ie the PRS10 is left
free-running), and the 1 pps measurements are used for time-transfer.

5.14.1 usage

prs10log.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

The PRS10 is also used as the system time reference so it has entries in
gpscv.conf associated with this:

2 reference::log status

2 reference::logging interval

2 reference::log path

2 reference::file extension

2 reference::power flag

58

5. GPSCV software

2 reference::status file

5.15 ticclog.py

ticclog.py is used to log time interval measurements from a TAPR Times-
tamping/TIme Interval Counter (TICC). See https://www.tapr.org/kits ticc.html

for more information about this counter.

5.15.1 usage

ticclog.py [option] . . .

The command line options are:
--help, -h print help and exit
--config, -c <file> use the specified configuration file
--debug, -d run in debugging mode
--settings, -s print the counter settings
--version, -v print version information and exit

It has the following specific configuration file entries in gpscv.conf:

2 counter::mode

2 counter::timestamp format

When the TICC is in timestamp mode, measurements are split into two
files.

5.16 Javad/Topcon receivers

Javad GPS Receiver Interface Language (GRIL) receivers are obsolete and
further development of the software described here has ceased. The software
has been tested with: Topcon Euro-80 Topcon Euro-160

5.16.1 jnslog.pl

jnslog.pl is used to configure and log Javad GRIL receivers.

It doesn’t produce a log file.

usage

jnslog.pl [option] . . . configurationFile

The command line options are:
-h print help and exit
-d run in debugging mode

59

5. GPSCV software

-r suppress the reset of the receiver on startup (NOTE! automatic reset)
-v print version information and exit

configuration

The file receiver.conf lists the commands used to configure the receiver.
For example, to configure a single frequency receiver:

GRIL commands

set,out/elm/dev/ser/a,$Init{receiver:elevation mask}

set,pos/iono,off

set,pos/tropo,off

set,dev/pps/a/time,gps

set,dev/pps/a/offs/ns,$Init{receiver:pps offset}

set,dev/pps/a/per/ms,1000

set,dev/pps/a/out,on

Receiver messages to turn on

RT # Receiver time

TO # Receiver base time to receiver time offset

ZA # PPS offset (sawtooth)

YA # Extra time offset

SI # Satellite index

EL # Satellite elevation

AZ # Satellite azimuth

SS # Satellite navigation status

FC # C/A lock loop status bits

F1

F2

RC # Full pseudorange C/A

R1 # Full pseudorange P/L1

R2 # Full pseudorange P/L2

P1 # For RINEX Obs

P2 # For RINEX Obs

RD # For RINEX

NP # Navigation Position text message

UO:{3600,14400,0,2} # UTC parameters, when changes or

↪→ every 4 hrs

IO:{3600,14400,0,2} # Ionospheric parameters

GE:{1,3600,0,2} # GPS ephemeris data

The GRIL commands in the first part of the file are executed verbatim, with
subsitution of values from the configuration file, written as Perl hash table
lookups. Messages to be enabled are then listed, one per line. The message
rate can be specified in the GRIL syntax.

60

5. GPSCV software

Configuration commands in gpscv.conf specific to this receiver are:

JNS receivers have a number of specific configuration entries in gpscv.conf:

2 receiver::configuration

2 receiver::pps synchronization

2 receiver::pps synchronization delay

2 paths::rinex l1l2

5.16.2 jnsextract.pl

jnsextract.pl is used to decode and extract information from Javda re-
ceiver log files. It will decompress the file if necessary. It doesn’t use
gpscv.conf.

usage

jnsextract.pl [option] . . . file

The command line options are:
-b <value> start time (s or hh:mm, default 0)
-c compress (eg skip repeat values) if possible
-e <value> stop time (s or hh:mm, default 24:00)
-g select GPS only
-i <n> decimation interval (in seconds, default=1)
-k keep the uncompressed file, if created
-o <mode> output mode:

bp receiver sync to reference time (BP message)
cn carrier-to-noise vs elevation
do DO derivative of time offset vs time
si visibility vs time (SI message)
np visibility vs time (NP message)
vt visibility vs time (list time for each SV)
tv visibility vs time (list SV for each time)
tr satellite tracks (PRN, azimuth, elevation)
tn satellite tracks (PRN, azimuth, elevation, CN)
to TO time offset vs time
ya YA time offset vs time
za ZA time offset vs time
st ST solution time tag vs time
uo UO UTC parameters

-r select GLONASS only

61

5. GPSCV software

5.16.3 runrinexobstc.pl

runrinexobstc.pl runs the now deprecated rinexobstc, which produces
a RINEX observation file suitable for precise positioning when used with a
suitable Javad receiver. mktimetx can now be configured to produce suitable
output.

runrinexobstc.pl doesn’t produce a log file.

usage

runrinexobstc.pl is normally run as a cron job.

To run runrinexobstc.pl on the command line, use

runrinexobstc.pl [option] . . . [Start MJD [Stop MJD]]

Start MJD and Stop MJD specify the range of MJDs to process. If a single
MJD is specified, then data for that day is processed. If no MJD is specified,
the previous day’s data is processed.

The options are:
-a <file> extend check for missed processing back n days (the default

is 7)
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-x run missed processing
-v print version information and exit

configuration

runrinexobstc.pl uses gpscv.conf.

It uses the following specific configuration file entries in gpscv.conf; most
relate to writing the RINEX observation file header:

2 antenna::x

2 antenna::y

2 antenna::z

2 antenna::marker name

2 antenna::marker number

2 antenna::delta e

2 antenna::delta h

62

5. GPSCV software

2 antenna::delta n

2 antenna::antenna number

2 antenna::antenna type

2 rinex::agency

2 rinex::observer

2 paths::rinex l1l2

5.17 NVS NV08C receivers

This receiver has become difficult to buy in small quantities and development
of the software described here has ceased.

5.17.1 nv08log.pl

nv08log.pl is used to configure and log NVS NV08 receivers. It needs the
Perl library NV08C.

It doesn’t produce a log file.

There are no NV08-specific configuration commands in gpscv.conf.

usage

nv08log.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-r reset the receiver on startup
-v print version information and exit

5.17.2 nv08extract.pl

nv08extract.pl is used to decode and extract information from NVS NV08
receiver log files. It will decompress the file if necessary.

It uses gpscv.conf to construct receiver log file names if the file is not
explicitly given.

usage

nv08extract.pl [option] . . . [file]

63

5. GPSCV software

Given an MJD via a command line option, it will construct a file name using
the information in gpscv.conf. If no MJD or file is given, it assumes the
current MJD for the file.

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-v print version information and exit
-m <MJD> MJD of the file to process
-t extract Time, Date and Time Zone offset
-o extract Receiver Operating Parameters
-s extract Visible Satellites
-n extract Number of Satellites and Dilution Of Precision (DOP)
-w extract Software Version, Device ID and Number of Channels
-f extract 1 PPS ’sawtooth’ correction
-T extract Time Synchronisation Operating Mode (antenna cable delay,

averaging time)
-p extract PVT Vectors and associated quality factors (including TDOP)
-a extract Additional Operating Parameters
-P extract Port status messages
-e extract Satellite ephemeris
-l extract Time scale parameters
-i extract Ionosphere parameters
-g extract GPS, GLONASS and UTC time scale parameters
-r extract Raw data (pseudoranges, etc)
-G extract Geocentric antenna coordinates in WGS-84 system
-u extract Unknown message (garbage data)
-z less verbose output

5.17.3 nv08info.pl

This actually does nothing useful. If it did, it would query the receiver for
its serial number and so on.

usage

nv08info.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-v print version information and exit

64

5. GPSCV software

5.18 Septentrio receivers

A typical processing chain for the Septentrio receiver looks like:

1. plrxlog.py to log the receiver

2. runsbf2rnx.py to generate RINEX files from SBF

3. mkcggtts.py to generate CGGTTS files from RINEX

Currently, the processing chain relies on the tools provided by Septentrio
and r2cggtts. Open source replacements for these are currently under de-
velopment. OpenTTP now provides sbf2rnx as a replacement for sbf2rin,
but this is limited to GPS at present.

5.18.1 plrxlog.py

plrxlog.py is used to configure and log Septentrio receivers. Unlike the
other receiver logging scripts, it logs using the receiver’s native binary data
format, rather than the custom OpenTTP format. It has mainly been used
with mosaicT receivers.

It doesn’t produce a log file.

usage

plrxlog.py [option] . . . configurationFile

The command line options are:
–config <file>, -c <file> use the specified configuration file
–debug, -d run in debugging mode
–reset, -r reset receiver and exit
–help, -h print help and exit
–version, -v print version information and exit

A reset command issues:

exeResetReceiver,Hard,PVTData+SatData

configuration

The file receiver.conf lists any custom commands used to configure the
receiver. These are written in Septentrio XXX format, and passed verbatim
to the receiver. For example,

lstInternalFile,Identification

SetPPSparameters,sec1,Low2High,0,RxClock,60

SetTimeSyncSource,EventA

SetSignalTracking,+GPSL1PY+BDSB2A+GALE5

65

5. GPSCV software

The default configuration for the mosaicT enables SBF output and the mes-
sage set needed for RINEX generation and the SatVisibility message.

5.18.2 mosaicmkdev.py

mosaicmkdev.py is used to create a symbolic link for the mosaic-T receiver.
Currently, it identifies a receiver by the serial number of the USB hub that
the various available USB devices in the mosaic-T (development kit) are
accessed through. It is typically used with a udev rule, an example of which
is included in the OpenTTP distribution.

The default configuration file is /usr/local/etc/mosaicmkdev.conf which
looks like:

[main]

receivers = mos01

[mos01]

serial number = 3612929

Symlinks to be made

ttyACM0 = mos01ACM0

ttyACM1 = mos01ACM1

The receivers option is a comma-separated list of section names, as per the
usual convention. Each section defines the setup for a particular receiver.

The serial number is currently matched through the udev ‘root device’ prop-
erty ‘ID SERIAL SHORT’.

The symlinks to be made in /dev are defined by the Linux device names
(ttyACM0, ttyACM1 only at present).

Startup errors reported via udev can be examined using

systemctl status systemd-udevd

5.18.3 runsbf2rnx.py

runsbf2rnx.py is a wrapper for sbf2rin, provided by Septentrio. It pro-
vides batch processing and fixes for some problems with the RINEX files.

usage

runsbf2rnx.py [OPTION] . . . [mjd [mjd . . .]]

The command line options are:
--help,-h print the help information and exit

66

5. GPSCV software

--config <file>, -c <file> use the specified configuration file
--debug,-d print debugging information to stderr
--version,-v show the version information and exit

configuration

[Main] section

exec
This specifies the path to the executable sbf2rin. The default is /usr/local/bin/sbf2rin.

sbf station name

[Receiver] section

file extension

[RINEX] section

version
This option specifies the RINEX version for the output, via the ‘-R’ option
to sbf2rin. The version is specified using the same syntax as sbf2rin uses.
Example:

version = 3

name format

obs directory
This option specifies where generated RINEX observation files are saved.

nav directory
This option specifies where generated RINEX navigation files are saved.

obs sta
This option specifies the station name to use for RINEX observation files.
Example:

a V2 style name

obs sta = SYDN

a V3 style name

obs sta = SYDN00AUS

67

5. GPSCV software

nav sta
This option specifies the station name to use for RINEX navigation files.
Example:

a V2 style name

nav sta = SEP1

create nav file
This option controls generation of a RINEX navigation files by sbf2rin via
its ‘-n’ option.

exclusions
This option specifies GNSS to be excluded from the generated RINEX files
via the ‘-x’ option to sbf2rin. The GNSS are specified using the same
syntax as sbf2rin uses.
Example:

exclusions = ISJ

fix header
This option specifies whether or not the RINEX header should be edited.
The RINEX header generated by sbf2rin needs a few fixes to be useable by
other software like Bernese.

header fixes
This option specifies the file to use when fixing the RINEX header. The file
specifies replacements for lines in the RINEX header, and needs to be in
RINEX format.

fix satellite count
Some older versions of sbf2rin incorrectly report the number of satellites
in the RINEX observation file header when GNSS are excluded via the ‘-x’
option to sbf2rin. The offending line in the RINEX header is removed,
since it is optional.
Example:

fix satellite count = yes

[Paths] section

receiver data

tmp
This option specifies where to write temporary files to. Temporary files are
removed after use.

68

5. GPSCV software

5.18.4 sbf2rinbatch.py

sbf2rinbatch.py is used for batch processing of SBF files via Septentrio’s
tool sbf2rin.

5.18.5 mksephourly.py

mksephourly.conf is used for hourly generation of REFSYS from CGGTTS
files. It is intended for ‘live’ monitoring of time-transfer. The script calls
runsbf2rnx.py to generate RINEX, and then mkcggtts.py to generate CG-
GTTS. A new file named MJD.dat is created each day, and updated by
rewriting it each time mksephourly.py is called.

The format of this file is:

MJD TOD (in seconds) REFSYS (mean) number of tracks

The command line options are:
–config <file>, -c <file> use the specified configuration file
–debug, -d run in debugging mode
–help, -h print help and exit
–version, -v print version information and exit

The default configuration file is /etc/mksephourly.conf which looks like:

[Main]

runsbf2rnx conf = etc/hourly.runsbf2rnx.conf

cggtts source = CGGTTS-GPS-P3

mkcggtts conf = etc/hourly.mkcggtts.conf

summary path = hourly_tt/summary

runsbf2rnx conf
This defines the configuration file to be used by runsbf2rnx.py.

mkcggtts conf
This defines the configuration file to be used by mkcggtts.py.

cggtts source
This defines the section in the configuration file used by mkcggtts for CG-
GTTS file generation. It is used to locate and identify the CGGTTS files
that REFSYS is extracted from.

summary path
This defines where summary files are written to.

5.18.6 sbf2rnx

Experimental!

69

5. GPSCV software

5.19 Trimble Resolution T receivers

Trimble Resolution T receivers are obsolete and further development of the
software described here has ceased. The successor to the Resolution T, the
SMT 360, cannot currently be used for time-transfer because of changes in
the message set. It is possible though that a future TSIP-based receiver may
be suitable for time-transfer.

5.19.1 restlog.pl

usage

restlog.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-r reset the receiver on startup
-v print version information and exit

configuration

restlog.pl respects the receiver::model configuration option. The valid
values are:

1. Resolution T

2. Resolution SMT 360

5.19.2 restextract.pl

restextract.pl is used to decode and extract information from Trimble
receiver log files. It will decompress the file if necessary.

usage

restextract.pl [option] . . .

Given an MJD via a command line option, it will construct a file name using
the information in gpscv.conf. If no MJD is given, it assumes the current
MJD for the file.

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-v print version information and exit

70

5. GPSCV software

-a extract S/N for visible satellites
-f show firmware version
-l leap second warning
-L leap second info)
-m <mjd> MJD of the file to process
-p position fix message
-r <svn> pseudoranges for satellite with given SVN (svn=999 reports

all satellites)
-s number of visible satellites
-t temperature
-u UTC offset
-x alarms and gps decoding status

5.19.3 restinfo.pl

restinfo.pl communicates with the receiver configured in gpscv.conf,
polling it for information such as hardware, software and firmware versions.
The serial port communication speed must be 115200 baud.

usage

restinfo.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-v print version information and exit

5.19.4 restconfig.pl

restconfig.pl is used to configure the receiver serial port for 115200 baud
and no parity bit. The latter is necessary for using the SMT 360 with ntpd.
The new configuration is written to flash memory.

usage

restconfig.pl [option] . . .

The command line options are:
-c <file> use the specified configuration file
-h print help and exit
-d run in debugging mode
-v print version information and exit

The serial port device name is read from gpscv.conf or the specified file.

71

5. GPSCV software

5.19.5 restplayer.pl

This is used to replay raw data files through a serial port, simulating the
operation of the GNSS receiver. This is useful for testing the operation of
ntpd, for example. This script will have to be modified for individual use
because it currently hard codes paths and device names.

5.20 ublox receivers

5.20.1 ublox9log.py

This python3 script is used with ublox series 9 receivers like the ZED-F9P
and ZED-F9T. The following messages are enabled for 1 Hz output:

2 RXM-RAWX

2 TIM-TP

2 NAV-SAT (not logged)

2 NAV-TIMEUTC

2 NAV-CLOCK

A status file is written once per minute, containing the SV identifiers of
tracked satellites with code and time synchronization flags set.

usage

ublox9log.py [option] . . .

The command line options are:
--help, -h print help and exit
--config, -c <file> use the specified configuration file
--debug, -d run in debugging mode
--reset, -r reset the receiver before configuration
--version, -v print version information and exit

configuration

ublox9log.pl respects the receiver::model configuration option. The
valid values are:

1. ZED-F9

5.20.2 ubloxlog.pl

This script used to configure and log series 8 receivers like the NEO-M8T.

72

5. GPSCV software

usage

ubloxlog.pl [option] . . .

The command line options are:
-h print help and exit
-c <file> use the specified configuration file
-d run in debugging mode
-r reset the receiver before configuration
-v print version information and exit

5.20.3 ubloxextract.py

ubloxextract.py is used to decode and extract information from ublox
receiver log files written in OpenTTP format. It will decompress the file if
necessary.

It uses gpscv.conf to construct receiver log file names if the file is not
explicitly given.

usage

ubloxextract.py [option] . . . [file]

Given an MJD via a command line option, it will construct a file name using
the information in gpscv.conf. If no MJD or file is given, it assumes the
current MJD for the file.

The command line options are:
--help, -h print help and exit
--config, -c <file> use the specified configuration file
--debug, -d run in debugging mode
--version, -v print version information and exit
--mjd, -m <MJD> MJD of the file to process
--uniqid show chip id
--monver show hardware and software versions
--navclock extract nav-clock message
--navsat extract nav-sat message
--navtimeutc extract nav-timeutc message
--rawx extract raw measurement data
--timtp extract sawtooth correction

5.20.4 ubloxmkdev.py

ubloxmkdev.py is used for creating a device name for a connected receiver.
It is useful, for example, when multiple receivers are connected and unique

73

5. GPSCV software

USB device identification is not possible. It works by connecting to the
receiver and querying its serial number. A configuration file defines the
device name for that serial number.

The script is typically called by udev.

usage

ubloxmkdev.py [option] . . . dev

The command line options are:
--help, -h print help and exit
--debug, -d run in debugging mode
--version, -v print version information and exit

configuration

The configuration file is /usr/local/etc/ublox.conf. It looks like:

ce92fa1422 ublox1

77435b1763 ublox2

Each line consists of the receiver’s serial number and the device name to be
associated with it.

5.21 Miscellaneous tools

5.21.1 cggttsqc.py

cggttsqc.py performs various checks on CGGTTS files. Running it on a
single CGGTTS file with no options will produce output like:

File Tracks Short Min SV Max SV High DSG Low ELV
57401.cctf 706 71 3 11 0 0

where:
‘Tracks’ is the total number of tracks
‘Short’ is the number of tracks with length less than a specified threshold
(default 780 s)
‘Min SV’ is the minimum number of SVs visible
‘Max SV’ is the maximum number of SVs visible
‘High DSG’ is the number of tracks with DSG above a specified threshold
(default 20 ns)
‘Low ELV’ is the number of tracks with elevation below a specified threshold
(default 10 degrees)

74

5. GPSCV software

usage

cggttsqc.py [OPTION] . . . file [file ldots]

The command line options are:
--help,-h print the help information and exit
--debug,-d print debugging information to stderr
--nowarn suppress warnings (eg about missing files, bad formatting in

CGGTTS files)
--dsg <value> set the upper limit for acceptable DSG. The units are

ns.
--elevation <value> set the lower limit for acceptable elevation. The

units are degrees.
--tracklength <value> set the lower limit for acceptable track length.

The units are seconds.
--checkheader show when significant fields in the header change, for

example the delays.
--nosequence do not interpret (two) input filenames as a sequence.
--plotcount plot a histogram of satellite count at each scheduled track

time
--version,-v show the version information and exit

examples

Mutiple files can be checked and a sequence can be specified with two file
names. For example:

cggttsqc.py --dsg 5 GZAA0157.834 GZAA0157.876

will report on all files between MJDs 57834 and 57876, indicating in the
DSG field the number of tracks with DSG greater than 5 ns. For the two
file names to be interpreted as a sequence, they must:

1. have names in v2E CGGTTS recommended format or in the format
MJD.xxx

2. be in the same directory

3. have the same extension, if in the format MJD.xxx

5.21.2 cmpcggtts.py

cmpcggtts.py matches tracks in paired CGGTTS files. It can be used for
time transfer and delay calibration. It reads V1, V2, V2E CGGTTS files.
It also reads the raw 30 s files produced by r2cggtts.

75

5. GPSCV software

usage

To run kickstart.py on the command line, use:

cmpcggtts.py [option] . . . refDir calDir firstMJD lastMJD

where

refDir directory for reference receiver
calDir directory for receiver being calibrated
firstMJD first MJD to be processed
lastMJD last MJD to be processed

The command line options are:
--help show this help message and exit
--starttime <time> time of day in HH:MM:SS format to start process-

ing (default 00:00:00)
--stoptime <time> time of day in HH:MM:SS format to stop process-

ing (default 23:59:00)
-–calfrc <calfrc> set the calibration FRC code (L1C,L3P,. . .)
-–reffrc <refrc> set the reference FRC code (L1C,L3P,. . .)
--elevationmask <value> elevation mask (in degrees, default 0.0)
--mintracklength <value> minimum track length (in s, default 750)
--maxdsg <value> maximum DSG (in ns, default 20.0)
--matchephemeris match on ephemeris (default no)
--cv compare in common view (default)
--aiv compare in all-in-view
--acceptdelays accept the delays (no prompts in delay calibration mode)
--refintdelays <REFINTDELAYS> search for given internal delays

in reference eg “GPS P1,GPS P2”
--calintdelays <CALINTDELAYS> search for given internal delays

in cal eg “GPS C2”
--delaycal delay calibration mode
--timetransfer time-transfer mode (default)
--ionosphere use the ionosphere in delay calibration mode (default =

not used)
--useRefMSIO use the measured ionosphere (mdio is removed from ref-

sys and msio is subtracted, useful for V1 CGGTTS)
--useCalMSIO use the measured ionosphere (mdio is removed from ref-

sys and msio is subtracted, useful for V1 CGGTTS)
--checksum exit on bad checksum (default = warn only)
--refprefix <value> file prefix for reference receiver (default = MJD)
--calprefix <value> file prefix for calibration receiver (default = MJD)
--refext <value> file extension for reference receiver (default = cctf)
--calext <value> file extension for calibration receiver (default = cctf)

76

5. GPSCV software

--comment <COMMENT> set comment on displayed plot
--debug, -d debug (to stderr)
--nowarn suppress warnings
--quiet suppress all output to the terminal
--keepall keep tracks after the end of the day
--version, -v show version and exit

The default mode is time-transfer. In this mode, a linear fit to the time-
transfer data is made and the fractional frequency error and REFSYS (eval-
uated at the midpoint of the data set) are outputted. The uncertainties are
estimated from the linear fit.

In delay calibration mode, the presumption is that the data are for two
receivers sharing a common clock and operating on a short baseline. The
ionosphere correction is removed by default but can be retained via a com-
mand line option. Delays as reported in the CGGTTS header can be changed
interactively; prompting for the new delays can be skipped with a command
line option.

Data can be filtered by elevation, track length and DSG.

Matching on ephemeris (IODE) can also be enforced. This can reduce time-
transfer noise when CGGTTS files produced by different programs are com-
pared.

Three text files are produced.

examples

Basic common-view time transfer with CGGTTS files in the folders refrx

and remrx:

cmpcggtts.py refrx remrx 57555 57556

Delay calibration with filenames according to the CGGTTS V2E specifica-
tion:

cmpcggtts.py --delaycal --refprefix GZAU01 --calprefix

↪→ GZAU99 refrx remrx 57555 57556

5.21.3 editcggtts.py

editcggtts.py is used to edit CGGTTS navigation files. The header check-
sum and the modification time are updated after editing,

usage

editcggtts.py [option] . . . filename [filename . . .]

77

5. GPSCV software

The command line options are:
--help,-h print the help information and exit
--debug,-d print debugging information to stderr
--comments <value> set comment
--output,-o <value> output to file/directory
--tmp output is to file(s) with .tmp added to name
--replace, -r replace the edited file(s)
--nosequence do not interpret (two) input file names as a sequence
--nowarn suppress warnings
–version,-v show the version information and exit

The --output, --tmp and --replace options are mutually exclusive. If
none of these options are used, output will be to stdout.

If two filenames are given without the --nosequence option, they will be
interpreted as specifying a sequence of files to be processed.

5.21.4 editrnxnav.py

editrnxnav.py is used to edit RINEX navigation files. Currently, it doesn‘t
do much but it will eventually do much more.

usage

cggttsqc.py [option] . . . file

The command line options are:
--help,-h print the help information and exit
--debug,-d print debugging information to stderr
--output <value> output to file/directory
--replace, -r replace edited file
--ura, -u <value> remove entries with URA greater than this
–version,-v show the version information and exit

5.21.5 editrnxobs.py

editrnxobs.py is used to edit RINEX observation files.

usage

editrnxobs.py [option] . . . file [file . . .]

The command line options are:
--help, -h print the help information and exit
--debug, -d print debugging information to stderr
--output,-o <file> output to file/directory

78

5. GPSCV software

--keep, -k keep intermediate files
--replace, -r replace edited file
--system <system> gnss system (BeiDou,Galileo,GPS,GLONASS)
--obstype <obstype> observation type (C2I,L2I,...)
--fixms fix ms ambiguities (ref RINEX file required)
--fixmissing add observations missing at the beginning of the day
--sequence, -s interpret input files as a sequence
--refrinex <file> reference RINEX file for fixing ms ambiguities (name

of first file if multiple input files are specified)
--version, -v show the version information and exit

5.21.6 fetchigs.py

fetchigs.py uses the Python library urllib to download GNSS products
and station observation files from IGS data centres. You will need a config-
uration file that sets up downloads from at least one IGS data centre. The
sample configuration file should be sufficient for most uses.

usage

fetchigs.py [option] . . . start [stop]

The start and stop times can be in the format:
MJD Modified Julian Date
yyyy-doy year and day of year (1 . . .)
yyyy-mm-dd year, month (1-12) and day (1 . . .)

The command line options are:
--help, -h print help and exit
--config <file> , -c use this configuration file
--debug, -d print debugging output to stderr
--outputdir <dir> set the output directory
--ephemeris get broadcast ephemeris
--clocks get clock products (.clk)
--orbits get orbit products (.sp3)
--rapid fetch rapid products
--final fetch final products
--centre <centre> set data centres
--listcentres, -l list available data centres
--observations get station observations (only mixed observations for V3)
--statid <statid> station identifier (eg V3 SYDN00AUS, V2 sydn)
--rinexversion <2,3> rinex version of station observation files
--system <system> gnss system (GLONASS,BEIDOU,GPS,GALILEO,MIXED
--noproxy disable use of proxy server
--proxy <proxy> set your proxy server (server:port)

79

5. GPSCV software

--version, -v print version information and exit

examples

This downloads V3 mixed observation files from the IGS station CEDU,
with the identifier CEDU00AUS for days 10 to 12 in 2020.

fetchigs.py --centre CDDIS --observations --statid

↪→ CEDU00AUS --version 3 --system MIXED 2010-10

↪→ 2020-12

This downloads final IGS clock and orbit products for MJD 58606 from the
CDDIS data centre.

fetchigs.py --centre CDDIS --clocks --orbits --final 58606

This downloads a brdc broadcast ephemeris file.

fetchigs.py --centre GSSC --ephemeris --system MIXED --

↪→ rinexversion 2 58606

configuration file

The [Main] section has two keys.

Data centres
This is a comma-separated list of sections which define IGS data centres
which can be used to download data.
Example:

Data centres = CDDIS,GSSC

Proxy server
This sets a proxy server (and port) to be used for downloads.
Example:

Proxy server = someproxy.in.megacorp.com:8080

Each defined IGS data centre has the following keys, defining various paths.

Base URL
This sets the base URL for downloading files.
Example:

Base URL = ftp://cddis.gsfc.nasa.gov

80

5. GPSCV software

Broadcast ephemeris
This sets the path relative to the base URL for downloading broadcast
ephemeris files.
Example:

Broadcast ephemeris = gnss/data/daily

Products
This sets the path relative to the base URL for downloading IGS products.
Example:

Products = gnss/products

Station data
This sets the path relative to the base URL for downloading IGS station
RINEX files.
Example:

Station Data = gnss/data/daily

5.21.7 ticqc.py

ticqc checks TIC files. It currently reports the total number of measure-
ments, duplicates and gaps in the file, and the data range.

usage

ticqc.py [option] file

The command line options are:
--help, -h print help and exit
--verbose verbose output eg duplicate measurements are printed out
--version, -v print version information and exit

81

6. System software

6.1 dioctrl

dioctrl is used to provide access to a digital I/O port. On Intel platforms,
the currently supported hardware includes the 8255 parallel port and the
SIOF8186x. dioctrl is not currently functional on the ARM platform.

6.2 kickstart.py

kickstart.py is used to check that required processes are running, and
restart them if necessary. It is used to start the receiver and counter logging
processes, for example.

The lock file for each process (target) contains the running process ID; this
is used by kickstart.py to test whether the target is running.

kickstart.py produces a log file in the user’s home directory, logs/kickstart.log.
Each time a process is checked, it touches the file logs/kickstart.target.check,
where target is specified in the configuration file.

6.2.1 usage

To run kickstart.py on the command line, use:

kickstart.py [option] . . .

The command line options are:
–config FILE, -c FILE use the specified configuration file
–debug, -d run in debugging mode
–help, -h print help and exit
–version, -v print version information and exit

6.2.2 configuration file

An example configuration file is:

82

6. System software

targets = okxem

[okxem]

target = okxem

command = bin/okxemlog.pl

lock file = logs/okxem.gpscv.lock

targets
This defines a list of sections, each of which corresponds to a process to
monitor.
Example:

targets = restlog,okxem

target
This defines a target identifier. It is used to construct filenames and as an
identifier in logged messages.
Example:

target = okxem

command
This defines the command used to start the target. Options can be used.
Example:

command = bin/okxemlog.pl

lock file
This defines the lock file associated with a target.
Example:

lock file = logs/okxem.gpscv.lock

Paths specified in the configuration file are constructed using the usual rules.

6.3 mjd

mjd provides conversion between a calendar date and MJD and shows the
current MJD.

6.3.1 usage

mjd [option]

The command line options are:
-d <DD MM YYYY> convert date to MJD
-h print help and exit

83

6. System software

-m <MJD> convert MJD to date
-t print today’s MJD and exit
-v print version information and exit

6.4 okcounterd

okcounterd provides the interface to the Opal Kelly FPGA development
board when configured as a multi-channel counter. It communicates with
user processes via port 21577 (it’s the date “Star Wars” premiered). Mutiple
processes can communicate with the daemon so that logging processes can
be separated.

okcounterd does not use a configuration file and does not produce a log file.

okcounterd recognizes the following commands, sent as plain text:
CONFIGURE GPIO 0|1 enables/disables the system GPIO.
CONFIGURE PPSSOURCE n selects the input channel of the counter

which is routed to the output 1 pps.
QUERY CONFIGURATION reads the device configuration register. okcounterd

sends a plain text response.
LISTEN registers a process to receive counter-timer readings.

okcounterdctrl.pl provides a convenient way to send commands.

Counter/timer data sent by okcounterd is in the following format:

channel_number timestamp (s) timestamp (µs) reading (ns)

Channel numbers are indexed from 1.

6.4.1 usage

okcounterd is automatically started by the system’s init system. On De-
bian, this is systemd. It can be run manually for debugging purposes. Use:

okcounterd [OPTION] . . .

The command line options are:
-b <file>load the specified bitfile (the full path is needed)
-d run in debugging mode
-h print help and exit
-v print version information and exit

To manually run okcounterd, you may need to disable the system service
and kill any running okcounterd process.

84

6. System software

6.5 okcounterdctl.pl

okcounterdctl.pl provides a convenient way to send commands to okcounterd.

okcounterdctl.pl doesn’t have a configuration file. It uses gpscv.conf to
determine the port used by okcounterd.

okcounterdctl.pl doesn’t produce a log file.

6.5.1 usage

To run okcounterdctl.pl on the command line, use:

okcounterdctl.pl [OPTION] . . .

The command line options are:
-d run in debugging mode
-g <0|1> disable/enable the system GPIO
-h print help and exit
-o <1 . . . 6> set the PPS OUT source
-p PORT set the port to connect to okcounterd (default is 21577)
-q query the counter configuration
-v print version information and exit

channel PPS signal

1 NavSpark
2 SMT360
3 NV08C
4 external pps
5 system time pps
6 GPIO
default GPSDO

Table 6.1: PPS OUT channels for the -p option

The default state is to output the GPSDO 1 pps.

6.6 okbfloader

okbfloader is used to load a bitfile to the XEM6001. Normally, okcounterd
will load the bitfile it needs on startup. okbfloader is mainly used during
development and testing.

6.6.1 usage

okbfloader [option] . . . file

85

6. System software

The command line options are:
-h print help and exit
-v print version information and exit

6.7 lcdmonitor

lcdmonitor runs the lcd display on the front panel of the unit.

lcdmonitor produces a log file /usr/local/log/lcdmonitor.log that records
significant commands run from the front panel, for example reboots.

A lock file /usr/local/log/lcdmonitor.lock is used to prevent duplicate
processes from running.

6.7.1 usage

lcdmonitor is automatically started by the system’s init system. On De-
bian, this is systemd. It can be run manually for debugging purposes.

The command line options are:
-d run in debugging mode
-h print help and exit
-v print version information and exit

To run ldcmonitor on the command line, you will need to disable the entry
in /etc/inittab, reread the inittab and kill any running lcdmonitor

process.

6.7.2 configuration file

The configuration file for ldcmonitor is /usr/local/etc/lcdmonitor.conf.
This file is only modifiable by the super-user. The file is divided into sec-
tions, with section names delimited by square brackets [].
Example:

token = value

Comments begin with a # character. Entries in the various sections of the
configuration file are given below.

[General] section

NTP user
This defines the name of the user associated with NTP functions.
Example:

NTP user = ntp-admin

86

6. System software

Squealer config
This specifies the location of the configuration file used by squealer, a
program used to detect system problems.
Example:

Squealer config = /home/cvgps/etc/squealer.conf

[UI] section

Show PRNs
This specifies whether or not to show the PRNs (or Space Vehicle identifiers)
of GPS satellites being tracked by the receiver. If this is set to zero, then
only the number of satellites tracked is displayed.
Example:

Show PRNs=1

LCD intensity
This sets the intensity of the LCD display. Valid values are 0 to 100.
Example:

LCD intensity=90

LCD contrast
This sets the contrast of the LCD display. Valid values are 0 to 100.
Example:

LCD contrast=95

[GPSCV] section

GPSCV user
This defines the name of the user associated with GPSCV functions.
Example:

GPSCV user = cvgps

gpscv config
This defines the location of the file gpscv.conf.
Example:

GPSCV config = /home/cvgps/etc/gpscv.conf

GPS restart command
This specifies the command used to restart the GPS receiver. Note that since
lcdmonitor runs as root, the restart must be explicitly done as cvgps.
Example:

87

6. System software

GPS restart command =su - cvgps -c ’/home/cvgps/bin/

↪→ check_rx’

GPS logger lock file
This specifies location of the lock file used by the GPS logging process. It
is used to determine which process needs to be killed before a restart.
Example:

GPS logger lock file=/home/cvgps/logs/rx.lock

[OS] section

Reboot command
This specifies the command used to reboot the PC.
Example:

Reboot command = /sbin/shutdown -r now

Poweroff command
This specifies the command used to shut down the PC.
Example:

Poweroff command = /sbin/shutdown -t 3 -h

ntpd restart command
This specifies the command used to restart ntpd.
Example:

ntpd restart command = /sbin/service ntpd restart

[Network] section

DNS
Example:

DNS = /etc/resolv.conf

Network
Example:

Network = /etc/sysconfig/network

Eth0
Example:

Eth0 = /etc/sysconfig/network-scripts/ifcfg-eth0

88

6. System software

6.8 libraries

6.8.1 libconfigurator

This is a C library used for parsing of configuration files. It is mainly used
by mktimetx.

The configuration file is read using

int configfile_parse_as_list(ListEntry **first,const char

↪→ *filename)

This returns a pointer to the first item in a linked list of ListEntry, which
describe entries in the configuration file.

Functions are provided for searching the list for an entry by section and key
(token) name, returning a value of the required type.

int list_get_int(ListEntry *first,const char *section,

↪→ const char * token,int *value);

int list_get_float(ListEntry *first,const char *section,

↪→ const char * token,float *value);

int list_get_double(ListEntry *first,const char *section,

↪→ const char * token,double *value);

int list_get_string(ListEntry *first,const char *section,

↪→ const char * token,char **value);

The return value of the function flags whether or not an error occurred. The
last error to occur is determined by calling:

config_file_get_last_error()

The error codes are:

NoError

FileNotFound

SectionNotFound

InternalError

ParseFailed

TokenNotFound

list clear() can be used to delete the list.

This should be replaced one day by something based on the C++ STL!

6.8.2 TFLibrary.pm

This library is effectively deprecated because all new development is now in
Python.

89

6. System software

6.8.3 OpenOK2

This is a C++ library that can be used for communicating with the Opal
Kelly FPGA board. It is a fork of a library originally written by Jennifer
Holt and now manintained by Jorge Francisco. Opal Kelly provides a similar
library for a number of platforms. When OpenTTP development began,
ARM support was not available hence the use of OpenOK2. One significant
limitation of the library is that it does not provide support for USB block
transfers.

6.8.4 ottplib.py

This library replaces TFLibrary.pm and should be used for all new develop-
ment.

ottplib.LoadConfig(path, options={})

Loads the configuration file specified by path, returning key/value pairs as
a dictionary. Two options can be supplied:

tolower all keys are converted to lower case if this is true

defaults a default configuration file is loaded first

Example:

cfg=ottplib.LoadConfig(configFile,{’tolower’:True})

ottplib.MJD(time)

Returns the Modified Julian Date, given the time in seconds since the epoch.
It is usually called with time.time()

ottplib.MakeAbsolutePath(path,root)
Returns a path constructed relative to root, unless path is already absolute.
A trailing slash is added if it is absent.

ottplib.MakeAbsoluteFilePath(file,home,defaultPath)

Returns an absolute path to file according to the following rules

1. If path begins with a slash then it is returned unchanged.

2. If path ends with a slash, then home is prepended.

3. Otherwise, defaultPath is prepended.

ottplib.CreateProcessLock(file)

Creates a lock file named file. The contents of the file are the process
name and its PID. When attempting to create a lock, the PID is checked in
proc. Returns True if the lock was successfully created.

90

6. System software

ottplib.RemoveProcessLock(file)
Removes the lock file named file. It returns nothing.

6.8.5 cggttslib.py

This library provides some functions for reading and manipulating CGGTTS
files.

cggttslib.CheckSum(string)

This computes the checksum of string using the algorithm described in the
CGGTTS specification. The checksum is returned as an integer.

cggttslib.ReadHeader(file)

This reads the CGGTTS header of file and returns the fields in a Python
dictionary. Dictionary keys are the same as in the header. For example,
REV DATE has the key ’rev date’ associated with it. The exceptions to this
are the delays INT DLY, SYS DLY and TOT DLY. For convenience, these are
further broken down.

The function takes one argument, a file name and returns a list contain-
ing the dictionary and any error messages as a single string. An empty
dictionary is returned if:

1. the file cannot be opened

2. there is a formatting error in the header

If the calculated checksum does not match the value in the header, an error
message is returned.

cggttslib.MakeFileSequence(file1,file2)

MakeFileSequence interpolates a sequence of file names between file1 and
file2. For example, if the two input file names are GZAU0158.532 and
GZAU0158.537, file names with MJDs ranging from 58532 through to 58537
are generated. The generated file names are returned as a Python list.

File names in two formats can be interpolated:

1. names in the format MJD.ext where MJD is a five digit MJD and ext,
the file extension, is arbitrary.

2. the format recommended in the CGGTTS v2E specification eg GZAU0158.532

For a sequence to be generated, the two file names must:

1. have the same path

2. have the same extension

91

6. System software

6.9 ppsd

ppsd produces a digital pulse on an I/O port, aligned with the system time.
It works by sleeping until just before the second (plus any programmed
delay) rolls over, and then going into a hard loop, polling the time until
rollover.

Two I/O ports are presently supported: the standard PC parallel port, and
SIO8186x devices. The latter are found on some single board computers.
For parallel port output, all 8 bits of the data port (pins 2 to 9 on a DB37)
are written to.

ppsd doesn’t produce a log file.

6.9.1 usage

To run ppsd on the command line, use:

ppsd [option] . . .

The command line options are:
-d run in debugging mode
-h print help and exit
-o <delay> set the PPS delay, in microseconds.
-v print version information and exit

6.9.2 configuration file

The configuration file, ppsd.conf contains a single number, an offset for the
output 1 pps, in microseconds.

6.10 sysmonitor.pl

sysmonitor.pl monitors the system status and provides notification of
alarm conditions via files written to a specified directory, and via calling
the alarm delivery system. In particular, lcdmonitor reads this directory
to pick up current alarms.

Some of the conditions currently monitored include:

2 TIC logging running (via it’s status file)

2 reference oscillator logging running

2 reference is locked

2 reference has lost power (PRS10 only)

2 GPS logging running

92

6. System software

2 GPS receiver is tracking sufficient satellites

2 RAID status (where RAID is used)

2 NTP reference clocks are healthy

The run time for an alarm must integrate up to the configured threshold
before an alarm is issued. Similarly, the run time for a clearing alarm must
integrate to zero before a clear is issued.

6.10.1 usage

sysmonitor.pl is normally started by the init system, for example by
systemd on Debian.

To run sysmonitor.pl on the command line, use:

sysmonitor.pl [OPTION]

The command line options are:
-c <file> use the specified configuration file
-d run in debugging mode
-h print help and exit
-v print version information and exit

To manually run okcounterd, you may need to disable the system service
and kill any running okcounterd process.

6.10.2 configuration file

The configuration file uses the format described in 5.3.

alarm path
This defines the directory to which alarm notifications are written.
Example:

alarm path = /usr/local/log/alarms

alarm threshold
This defines the threshold at which alarms are raised. The units are seconds.
Example:

alarm threshold = 60

alerter queue
Alarms can be delivered by other methods using alerter. This entry defines
the queue used by alerter. Example:

alerter queue = /usr/local/log/alert.log

93

6. System software

gpscv account
This defines the account used for GPSCV processing (and implicitly, the
location of gpscv.conf).
Example:

gpscv account = cvgps

log file
This defines the file used for logging of sysmonitor’s operation and alarm
events.
Example:

log file = /usr/local/log/sysmonitor.log

ntp account
This defines the account used for NTP-related logging and processing.
Example:

ntp account = ntp-admin

ntpd refclocks
This specifies a list of sections, each of which defines an ntpd refclock that
is to be monitored.
Example:

ntpd refclocks = PPS,NMEA

An ntpd refclock section looks like:

[NMEA]

refid = 127.127.20.0

name = NMEA

6.10.3 log file

sysmonitor.pl creates a log file. The default file is /usr/local/log/sysmonitor.log

6.11 gziplogs.py

gziplogs.py is used to manage compression of log files. Typically, it
will be run once per day, after UTC0. It requires a configuration file,
gziplogs.conf, which is expected to be in the user’s etc directory and
uses our standard format 5.3.

gziplogs.py doesn’t produce a log file.

94

6. System software

6.11.1 usage

gziplogs.py is normally run as a cron job. To run it on the command line,
use:

gziplogs.py [option] . . . [MJD [MJD]]

The command line options are:
–config <file>, -c <file> use the specified configuration file
–debug, -d run in debugging mode
–help, -h print help and exit
–version, -v print version information and exit

Either a single MJD or range of MJDs can be given. If no MJD is given,
the MJD of the previous day is used.

6.11.2 configuration file

A targets entry is needed. Note that this is not defined within a section,
for compatibility with older versions of this script.

targets
This entry defines a comma-separated list of targets. Each target defines a
section in the configuration file.
Example:

targets = ppslogs,ntpstats

Within each section defined by targets, the following entries are defined

files
This entry defines a comma-separated list of files to compress. Three date
specifications, delimited by parentheses, are recognized: YYYYMMDD,
MJD and YYDOY.
Example:

files = raw/{MJD}.rx, raw/{MJD}.tic, raw/{YYYYMMDD}.dat

destination
This optional entry defines a directory to move compressed files to
Example:

destination = archive

Note, for compatibility, the file format used by gziplogs.pl, the deprecated
Perl version of gziplogs.py is also supported.

95

A. Software license

The OpenTTP software is offered under the MIT license, as given below. A
copy of this license is present in each software source.

The MIT License (MIT)

Copyright (c) 2018 The Authors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

96

	Introduction
	What is OpenTTP?
	The OpenTTP software suite
	Supported GNSS receivers
	Supported counters

	The OpenTTP reference platform
	Licenses

	Getting started with the Reference Platform
	The front panel
	Using the front panel keypad
	Menus

	The rear panel
	Installation
	Operating environment
	Install the GPS antenna and cable
	Make other system connections

	Logging in
	The cvgps user
	Checking operation
	Local configuration
	Securing the system
	Maintenance
	Updating the software
	Replacing the SD card

	The reference platform hardware
	Antenna
	Multi-channel counter/timer
	Counter delays

	Electrical specifications

	Installing the software
	Installation requirements
	Obtaining, building and installing the software
	Building the documentation
	Installing the software

	A minimal software setup
	Common configuration problems
	UUCP lock file creation

	GPSCV software
	Software overview
	crontab
	Configuration file format
	Paths

	Data file formats
	GPS receiver
	Time-interval counter

	gpscv.conf - the core configuration file
	[Antenna] section
	[CGGTTS] section
	[Counter] section
	[Misc] section
	[Delays] section
	[Paths] section
	[Receiver] section
	[Reference] section
	[RINEX] section

	mktimetx
	usage
	configuration file
	log file

	runmktimetx.pl
	usage

	mkcggtts.py
	usage
	configuration file
	examples

	rnx2cggtts
	usage
	configuration file

	cnt9xlog.py
	usage
	configuration file

	hp5313xlog.pl
	usage
	configuration file

	ks53230log.py
	usage
	configuration file

	okxemlog.pl
	usage

	prs10log.pl
	usage

	ticclog.py
	usage

	Javad/Topcon receivers
	jnslog.pl
	jnsextract.pl
	runrinexobstc.pl

	NVS NV08C receivers
	nv08log.pl
	nv08extract.pl
	nv08info.pl

	Septentrio receivers
	plrxlog.py
	mosaicmkdev.py
	runsbf2rnx.py
	sbf2rinbatch.py
	mksephourly.py
	sbf2rnx

	Trimble Resolution T receivers
	restlog.pl
	restextract.pl
	restinfo.pl
	restconfig.pl
	restplayer.pl

	ublox receivers
	ublox9log.py
	ubloxlog.pl
	ubloxextract.py
	ubloxmkdev.py

	Miscellaneous tools
	cggttsqc.py
	cmpcggtts.py
	editcggtts.py
	editrnxnav.py
	editrnxobs.py
	fetchigs.py
	ticqc.py

	System software
	dioctrl
	kickstart.py
	usage
	configuration file

	mjd
	usage

	okcounterd
	usage

	okcounterdctl.pl
	usage

	okbfloader
	usage

	lcdmonitor
	usage
	configuration file

	libraries
	libconfigurator
	TFLibrary.pm
	OpenOK2
	ottplib.py
	cggttslib.py

	ppsd
	usage
	configuration file

	sysmonitor.pl
	usage
	configuration file
	log file

	gziplogs.py
	usage
	configuration file

	Software license

