



Australian Government Department of Industry, Innovation and Science

**National Measurement Institute** 

# Using low-cost receivers for multi-GNSS time-transfer

Michael J. Wouters

E. Louis Marais





Some applications do not need the highest accuracy and precision eg traceable time-of-day via Network Time Protocol is only accurate at the output to microseconds.



Open Traceable Time Platform – a low-cost (\$<2K) time transfer system (Tuesday poster session)

# Why use multi-GNSS?

- Potential to improve time-transfer stability with extra satellites
- Validation of GNSS time by inter-comparison of the GNSS



Separate receiver for each GNSS is practical.



# Limitations of low-cost receivers



#### IFCS-EFTF 2019

## Setup for characterization of receiver noise



This facilitates comparison of receivers at the sub-ns level



# **Receivers tested**

| NVS NV08C-CSM                                                                                              |      |     | ublox NEO-M8T                         |      |        |     | ublox ZED-F9P                                                                                                                     |      |        |     |
|------------------------------------------------------------------------------------------------------------|------|-----|---------------------------------------|------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------|------|--------|-----|
| GPS                                                                                                        | GLO  | BDS | GPS                                   | GLO  | GAL    | BDS | GPS                                                                                                                               | GLO  | GAL    | BDS |
| L1C/A                                                                                                      | L1OF | B1  | L1C/A                                 | L10F | E1-B/C | B1  | L1C/A                                                                                                                             | L10F | E1-B/C | B1I |
|                                                                                                            |      |     |                                       |      |        |     | L2C                                                                                                                               | L2OF | E5b    | B2I |
| 32 channels                                                                                                |      |     | 72 channels                           |      |        |     | 184 channels                                                                                                                      |      |        |     |
| The smaller number of<br>channels means that this<br>receiver cannot track all<br>three GNSS concurrently. |      |     | Maximum of three GNSS can be tracked. |      |        |     | All GNSS can be tracked<br>concurrently.<br>GPS L2C tracked, so about<br>2/3 of visible satellites are<br>tracked dual frequency. |      |        |     |

# Configuration of receivers

|                                                           | NVS NV08C-CSM                                 | ublox NEO-M8T                                  | ublox ZED-F9P                       |
|-----------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------|
| Reference<br>timescale for<br>pseudorange<br>measurements | ? appears to be the corresponding GNSS system | GPS                                            | GPS                                 |
| PPS alignment                                             | UTC                                           | GPS                                            | GPS                                 |
| GNSS combinations                                         | GPS<br>GPS + GLONASS<br>GPS + BeiDou          | GPS + Galileo<br>GPS + GLONASS<br>GPS + BeiDou | GPS + GLONASS +<br>Galileo + BeiDou |

## Effectiveness of the sawtooth correction



# NV08C-CSM pps problems



### Satellite visibility: ublox ZED-F9P



GLONASS



Galileo



BeiDou



# Receiver noise: NVS NV08C-CSM



IFCS-EFTF 2019

measurement.gov.au

# Receiver noise: ublox NEO-M8T



IFCS-EFTF 2019

measurement.gov.au

# Receiver noise: ublox ZED-F9P



#### IFCS-EFTF 2019

measurement.gov.au

#### Single frequency time-transfer between Sydney and Ceduna



#### L1 time-transfer comparison



#### IFCS-EFTF 2019

measurement.gov.au

# Summary

- We deliver traceable time and frequency to our customers with timetransfer systems based on low-cost receivers.
- The quality of the sawtooth correction is critical to the stability at averaging times less than 1000 s.
- Receivers have their individual quirks and it can sometimes require detective work to identify eg the receiver's reference timescale
- Single-frequency receivers have adequate performance for our applications.
- New multi-GNSS, dual frequency receivers offer some significant improvements over the single-frequency receivers we are currently using.



"Time Frame II " John Beasley

Department of Industry, Innovation and Science | National Measurement Institute

36 Bradfield Road Lindfield NSW 2070 Australia Telephone +61 2 8467 3600

